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Dynamical and statistical downscaling 
of multidecadal global climate models pro-
vides finer spatial resolution information 
for climate impact assessments [Wilby and 
Fowler, 2010]. Increasingly, some scientists 
are using the language of “prediction” with 
respect to future regional climate change 
and impacts [e.g., Hurrell et al., 2009; Shap-
iro et al., 2010], yet others note serious res-
ervations about the capability of downscal-
ing to provide detailed, accurate predictions 
[see Kerr, 2011].

Dynamic downscaling is based on regional 
climate models (usually just the atmospheric 
part) that have finer horizontal grid resolu-
tion of surface features such as terrain [Cas-
tro et al., 2005]. Statistical downscaling uses 
transfer functions (e.g., regression relation-
ships) representing observed relationships 
between larger-scale atmospheric variables 
and local quantities such as daily precipita-
tion and/or temperature [Wilby and Fowler, 
2010]. These approaches have been suc-
cessful in improving the skill of numerical 
weather prediction. Statistical downscaling 
can also be used as the benchmark (the con-
trol) against which dynamic downscaling 
skill is judged [Landsea and Knaff, 2000].

Castro et al. [2005] categorized downscal-
ing into four types (see also Table 1).

Type 1 downscaling is used for short-term, 
numerical weather prediction. In dynamic type 
1 downscaling the regional model includes ini-
tial conditions from observations. In type 1 sta-
tistical downscaling the regression relationships 
are developed from observed data and the 
type 1 dynamic model predictions. 

Type 2 dynamic downscaling refers to 
regional weather (or climate) simulations 
[e.g., Feser et al., 2011] in which the regional 
model’s initial atmospheric conditions 
are forgotten (i.e., the predictions do not 
depend on the specific initial conditions) 
but results still depend on the lateral bound-
ary conditions from a global numerical 
weather prediction where initial observed 
atmospheric conditions are not yet forgot-
ten or are from a global reanalysis. Type 2 
statistical downscaling uses the regression 
relationships developed for type 1 statistical 
downscaling except that the input variables 
are from the type 2 weather (or climate) sim-
ulation. Downscaling from reanalysis prod-
ucts (type 2 downscaling) defines the maxi-
mum forecast skill that is achievable with 
type 3 and type 4 downscaling.

Type 3 dynamic downscaling takes lat-
eral boundary conditions from a global 
model prediction forced by specified real-
world surface boundary conditions such 

as seasonal weather predictions based on 
observed sea surface temperatures, but the 
initial observed atmospheric conditions in 
the global model are forgotten [e.g., Castro 
et al., 2007]. Type 3 statistical downscaling 
uses the regression relationships developed 
for type 1 statistical downscaling except 
using the variables from the global model 
prediction forced by specified real-world 
surface boundary conditions.

Type 4 dynamic downscaling takes lateral 
boundary conditions from an Earth system 
model in which coupled interactions among 
the atmosphere, ocean, biosphere, and cryo-
sphere are predicted [e.g., Solomon et al., 
2007]. Other than terrain, all other compo-
nents of the climate system are calculated 
by the model except for human forcings, 
including greenhouse gas emissions scenar-
ios, which are prescribed. Type 4 dynamic 
downscaling is widely used to provide 
policy makers with impacts from climate 
decades into the future. Type 4 statistical 
downscaling uses transfer functions devel-
oped for the present climate, fed with large-
scale atmospheric information taken from 
Earth system models representing future cli-
mate conditions. It is assumed that statisti-
cal relationships between real-world surface 
observations and large-scale weather pat-
terns will not change. Type 4 downscaling 
has practical value but with the very impor-
tant caveat that it should be used for model 
sensitivity experiments and not as predic-
tions [e.g., Pielke, 2002; Prudhomme et al., 
2010]. 

Because real-world observational con-
straints diminish from type 1 to type 4 
downscaling, uncertainty grows as more 
climate variables must be predicted by 
models rather than obtained from observa-
tions. Pielke et al. [2012] assert that type 4 
dynamic downscaling fails to improve accu-
racy beyond what could be achieved by 
interpolating global model predictions onto 

a finer-scale terrain or landscape map. This 
position is based on several reasons:

First, as a necessary condition for an 
accurate prediction, multidecadal global 
climate model simulations must include all 
first-order climate forcings and feedbacks. 
However, they do not.

Second, current global multidecadal pre-
dictions are unable to skillfully simulate 
regional forcing by major atmospheric cir-
culation features such as from El Niño and 
La Niña and the South Asian monsoon [e.g., 
Annamalai et al., 2007; Paeth et al., 2008].

Third, while regional climate downscal-
ing yields higher spatial resolution, the 
downscaling is strongly dependent on the 
lateral boundary conditions and the meth-
ods used to constrain the regional climate 
model variables to the coarser spatial scale 
information from the parent global mod-
els. Large-scale climate errors in the global 
models are retained and could even be 
amplified by the higher-spatial-resolution 
regional models. If the global multidecadal 
climate model predictions do not accu-
rately predict large-scale circulation fea-
tures, for instance, they cannot provide 
accurate lateral boundary conditions and 
interior nudging to regional climate models.

Fourth, apart from variable grid 
approaches, regional models do not have 
the domain scale (or two-way interaction 
between the regional and global models) 
to improve predictions of the larger-scale 
atmospheric features. This means that if the 
regional model significantly alters the atmo-
spheric and/or ocean circulations, there is 
no way for this information to affect larger-
scale circulation features that are being 
fed into the regional model through the lat-
eral boundary conditions and nudging. For 
example, recent research indicates that 
terrestrial evaporation from the Eurasian 
continent contributes 80% of China’s water 
resources [van der Ent et al., 2010]. In this 
case, the regional model domain has to be 
large enough to include areas that are con-
nected by soil moisture feedbacks.

Last, the lateral boundary conditions 
for input to regional downscaling require 
regional-scale information from a global 
forecast model. However the global model 
does not have this regional-scale informa-
tion due to its limited spatial resolution. This 
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Table 1. A Typology of Downscaling Applications

Type Purpose Inputs to the Regional Downscaling

1
short-term numerical 
weather prediction

global analysis of observed data plus 
observed regional initial conditions

2
regional climate 

simulation
atmosphere information from global or regional reanaly-
ses in which the regional initial conditions are forgotten

3 seasonal prediction
global atmospheric model prediction with 

prescribed observed surface conditions 
(e.g., sea surface temperatures)

4 climate prediction
multidecadal global climate model prediction 

based on prescribed radiative forcing
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is, however, a logical paradox because the 
regional model needs something that can 
be acquired only by a regional model (or 
regional observations). Therefore, the acqui-
sition of lateral boundary conditions with 
the needed spatial resolution becomes logi-
cally impossible. Thus, even with the higher-
resolution analyses of terrain and land 
use in the regional domain, the errors and 
uncertainty from the larger model still per-
sist, rendering the added simulated spatial 
details inaccurate.

There is also an assumption that although 
global climate models cannot predict future 
climate change as an initial value problem, 
they can predict future climate statistics as a 
boundary value problem [Palmer et al., 2008]. 
However, for regional downscaling (and 
global) models to add value (beyond what is 
available to the impacts community via the 
historical, recent paleorecord and a worst-
case sequence of days), they must be able to 
skillfully predict changes in regional weather 
statistics in response to human climate forc-
ings. This is a greater challenge than even 
skillfully simulating current weather statistics. 

It is therefore inappropriate to present 
type 4 results to the impacts community as 
reflecting more than a subset of possible 
future climate risks.

Alongside the special uses of type 4 
downscaling (noted above), we favor a 
bottom-up, resource-based vulnerabil-
ity approach to assess the climate and 
other environmental and societal threats 
to critical assets [Wilby and Dessai, 2010; 
Kabat et al., 2004]. This framework con-
siders the coping conditions and critical 
thresholds of natural and human envi-
ronments beyond which external pres-
sures (including climate change) cause 
harm to water resources, food, energy, 
human health, and ecosystem function. 
Such an approach could assist policy mak-
ers in developing more holistic mitiga-
tion and adaptation strategies that deal 
with the complex spectrum of social 

and environmental drivers over coming 
decades, beyond carbon dioxide and a 
few other greenhouse gases.
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