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ABSTRACT: The Global Historical Climate Network version 2 (GHCNv.2)
surface temperature dataset is widely used for reconstructions such as the global
average surface temperature (GAST) anomaly. Because land use and land cover
(LULC) affect temperatures, it is important to examine the spatial distribution
and the LULC representation of GHCNv.2 stations. Here, nightlight imagery,
two LULC datasets, and a population and cropland historical reconstruction are
used to estimate the present and historical worldwide occurrence of LULC
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types and the number of GHCNv.2 stations within each. Results show that the
GHCNv.2 station locations are biased toward urban and cropland (.50% sta-
tions versus 18.4% of the world’s land) and past century reclaimed cropland
areas (35% stations versus 3.4% land). However, widely occurring LULC such
as open shrubland, bare, snow/ice, and evergreen broadleaf forests are under-
represented (14% stations versus 48.1% land), as well as nonurban areas that
have remained uncultivated in the past century (14.2% stations versus 43.2%
land). Results from the temperature trends over the different landscapes confirm
that the temperature trends are different for different LULC and that the
GHCNv.2 stations network might be missing on long-term larger positive
trends. This opens the possibility that the temperature increases of Earth’s land
surface in the last century would be higher than what the GHCNv.2-based
GAST analyses report.

KEYWORDS: Surface temperatures; Land cover; GHCN; Temperature trends

1. Introduction
The most recent Intergovernmental Panel on Climate Change (IPCC) report

(Solomon et al. 2007) identifies greenhouse gases as the major climate forcing
agent responsible for the increase in temperatures. Changes in land use/land cover
(LULC) and ground albedo, however, also alter the energy balance of the climate
(National Research Council 2005) and are now being considered with interest (De
Noblet-Ducoudre and Pitman 2007; Pitman et al. 2009). To date, the scientific level
of understanding of the role of LULC change (and subsequent changes in albedo
and surface heat capacity) on climate forcing is low relative to that of greenhouse
gases (Solomon et al. 2007). Many researchers, however, suggest that LULC
changes can cause large local and regional temperature changes (Pielke and
Avissar 1990; Shukla et al. 1990; Kalnay and Cai 2003; Kabat et al. 2004; Lim
et al. 2005; Feddema et al. 2005; Pielke 2005; Chen et al. 2006; Hale et al. 2006;
Hale et al. 2008; Cotton and Pielke 2007; Wichansky et al. 2008; Pielke and Niyogi
2010; Mahmood et al. 2010). This effect on temperature can be the result of
changes in surface roughness, vegetation amount and type, and the alteration of
surface heat and moisture fluxes. LULC differ over the world and have been un-
equally modified so that their distribution and the extent to which they have been
anthropogenically altered vary.

Surface temperatures have been recorded at many locations around Earth for
many decades. The Global Historical Climate Network (GHCN; Peterson and Vose
1997) regroups these recordings in one database that is the basis for most past
temperatures reconstructions, including the well-known global average surface
temperature (GAST) anomaly analysis (Hansen et al. 1999; Hansen et al. 2001;
Jones and Moberg 2003; Smith and Reynolds 2005). The spatial distribution of
these stations is heterogeneous (Figure 1), with some areas of the world being
overrepresented (e.g., Europe and United States) and other areas being underrep-
resented (e.g., Russia, Africa, South America, and the polar regions). To correct for
this bias, in addition to other known biases such as time of observations and
instrument changes (e.g., see Pielke et al. 2000; Pielke et al. 2002; Pielke et al.
2007a; Pielke et al. 2007b), the GHCN temperatures are often averaged over
smaller grid cells before being globally averaged to create a global world anomaly.
The result is a more homogeneous appearing temperature record geographically.
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However, it is unclear if the station locations adequately represent each type of land
cover found on Earth as well as LULC changes during the past several decades.
This is an important assessment because of the recognized impact of land-cover
transformations such as urbanization, deforestation, agricultural intensification,
and practices such as irrigation on climate and therefore local temperatures (Foley
et al. 2005; Roy et al. 2007; Turner et al. 2007; Fall et al. 2010a). There are also
issues with the quality of the temperature data because of the local exposure of the
surface temperature observing sites (i.e., Davey and Pielke 2005; Pielke et al.
2007a; Pielke et al. 2007b; Menne et al. 2010; Fall et al. 2010b, manuscript sub-
mitted to J. Geophys. Res.), but we do not consider this subject in this paper.

The goal of this paper is to assess the representation of the current GHCN
monthly temperature dataset [version 2 (GHCNv.2)] used to compute the GAST
anomaly in terms of its representation of global LULC and their changes since the
1700s. The assessment is guided from the results of many recent studies that
suggest the LULC can impact the surface temperature trends (see Pielke et al.
2007a; Mahmood et al. 2010 for a recent review). Thus, the underlying principle is
that any land-cover bias that exists in the GHCNv.2 dataset could introduce a
positive (warming) or negative (cooling) bias in the GAST anomaly. This paper
seeks to answer two major questions: (i) In what types of ecosystems and land
cover are the GHCNv.2 stations located today? (ii) What are the historical popu-
lation and cropland area changes at each GHCN v.2 station?

Unlike temperatures, land-cover change is a quantity that has not been measured
continuously. Records of land-cover changes can rely only on historical records;
inference of past human migrations; and, for the most recent years, satellite ob-
servations. Historical records and past population reconstructions can be subjec-
tive, and satellite observations, although useful, can have limited spatial resolution
or temporal coverage. Further, the GHCN stations themselves show significant
changes both in terms of the number of stations as well as changes in the station

Figure 1. Spatial distribution of GHCNv.2 stations.
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history (Pielke et al. 2007a). Such limitations are inherent in a global monitoring
network in wake of the regional development and also because the siting and
distribution are often beyond the control of a single organization. In view of these
inherent limitations, our results provide the first attempt at spatially assessing the
distribution of the GHCNv.2 dataset in term of global land-cover representation.

2. Methods

2.1. Datasets description

2.1.1. Temperature stations

The GHCNv.2 temperature dataset regroups measurements from 7280 stations
from around the world, all with at least 10 years of data. It also includes a subset of
5206 stations that is homogeneity adjusted so that discontinuities in the tempera-
ture record are corrected for biases due to changes in the instrumentation, time of
observation bias, station moves, urban effects, and hand-checked exclusion of
outliers from the original records (Peterson and Vose 1997; Peterson 2006; Pielke
et al. 2007b). This second dataset is referred to here as the adjusted dataset. Each
station of this dataset has at least 20 years of continuous data. The GHCNv.2
temperature dataset has been used by different research institutes to compute the
GAST anomaly of the past century. The works of the following groups are the most
commonly cited:

The Climatic Research Unit (CRU) at the University of East Anglia (Jones
and Moberg 2003);

The National Climatic Data Center (NCDC) at the National Oceanic and
Atmospheric Administration (Smith and Reynolds 2005); and

The Goddard Institute for Space Studies (GISS) at the National Aeronautics
and Space Administration (Hansen et al. 1999; Hansen et al. 2001).

We obtained a list of stations that were used in the GAST analysis for all three
datasets (CRU, NCDC, and GISS). NCDC uses data from all stations in the original
adjusted GHCNv.2 dataset. GISS uses the unadjusted data from the GHCNv.2
dataset, separating the U.S. stations into a distinct subdataset [U. S. Historical
Climatology Network (USHCN)] and carrying their own adjustment independently
on both. The CRU dataset merges some of the GHCNv.2 data with their own
temperature dataset to make it more comprehensive (Jones 1994), resulting in
many stations that overlap between their final dataset and the GHCNv.2. The main
steps in the stations selection of each dataset are summarized in Table 1.

The first step of our data preparation was to determine which stations in the three
datasets are GHCNv.2 stations and determine the number of spatial duplicates
(stations with same geographical coordinates). For each dataset, we created two
subsets of stations. The first subset includes all stations (GHCN and non-GHCN)
after removal of spatial duplicates, and it is used to compare station locations with
historical LULC and population. The second subset includes only GHCNv.2 sta-
tions. Table 2 indicates the number of stations in each subset.

Typically, each temperature database would contain station numbers, names, and
coordinates that could be matched to GHCNv.2 values. However, in the case of the
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CRU dataset, the stations numbers have sometimes been modified and geograph-
ical coordinates updated by CRU. It was therefore difficult to retrieve the specific
list of matching GHCNv.2 stations. For this data subset, we selected all GHCNv.2
stations that were either matching the CRU station coordinates, had a similar
station number, or had coordinates very close to the one provided by CRU (co-
ordinate update is inferred). Therefore, the resulting CRU data subset is only an
approximation of the GHCNv.2 stations used in the CRU analysis.

2.1.2. DMSP nighttime light imagery

To classify the present-day urban setting at each station, we used the thresh-
olding method introduced by Imhoff et al. (Imhoff et al. 1997) that uses nighttime
light imagery from the Defense Meteorological Satellite Program (DMSP; Elvidge
et al. 1999) as a proxy for urban extent. The GHCNv.2 dataset includes information
on population, but most of the data are based on the 1993 United Nations De-
mographic Yearbook (Peterson and Vose 1997) and therefore are no longer rep-
resentative of present-day urban areas, particularly in regions that are undergoing a
rapid pace of population growth and land transformation.

We used a recent nighttime light imagery: a 2003 cloud-free composite derived
from all scenes available for this year from the DMSP Operational Linescan
System (OLS) F-15, a low-light imaging capacity sensor originally developed to
measure moonlight reflection off clouds. The product spatial footprint is 30 arc sec
(2.7 km) and covers all world areas between 2658 and 658 latitude. Pixel digital
number (DN) values range from 1 to 63 and are proportional to the percent fre-
quency at which light was detected over that pixel.

To relate night light intensity to urban extent, we used the thresholds established
empirically by Imhoff et al. (Imhoff et al. 1997; Imhoff et al. 2000) to classify each
station into three classes: unlit, dim, and bright corresponding to rural, peri-urban,
and urban, respectively (Table 3). Imhoff et al. (Imhoff et al. 2000) correlated these
thresholds to the following average population densities: 14 100 and 1064 inhabi-
tants per square kilometer. These thresholds were also used as part of the temperature
adjustment method GISS developed for their GAST analysis (Hansen et al. 2001).

2.1.3. GLCC v.2.0

The Global Land Cover Characterization (GLCC) database is a worldwide
collection of land-cover classifications put together by the U.S. Geological Survey

Table 2. Number of stations in each database and its two subsets.

No. of stations
in database

Size of first data
subset (no spatial

duplicates)

Size of second data
subset (GHCNv.2

stations only)

CRU 4138, including 4038 3756
282 non-GHCNv.2 stations
100 spatial duplicates

NCDC 5206, including 4771 4771
435 spatial duplicates

GISS 6257, including 6236 6229
7 non-GHCNv.2 stations
21 spatial duplicates
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(USGS), the University of Nebraska-Lincoln, and the Joint Research Centre of the
European Commission. The dataset is primarily derived from 1-km Advanced Very
High Resolution Radiometer (AVHRR) 10-day Normalized Difference Vegetation
Index (NDVI) data. The imagery was acquired over a 12-month period between
April 1992 and March 1993. This dataset was used to determine the area of the
world occupied by specific land cover and ecosystems, as well as the ones found at
temperature stations used in GAST computations.

We used two GLCC thematic maps: the International Geosphere Biosphere
Programme (IGBP) land-cover classification (Belward 1996) and the Global Ec-
osystems (GE) classification (Olson 1994a; Olson 1994b). The IGBP divides the
globe into 17 land-cover types. The GE classification divides the globe into 96
ecosystems based on land-cover mosaic, information on local floristic properties,
and local climate. The complete list of these land covers and ecosystems can be
found on the USGS GLCC Web site (available online at http://edc2.usgs.gov/glcc/).

2.1.4. HYDE 3 historical land-cover dataset

The History Database of the Global Environment (HYDE) dataset was used to
estimate the portion of the world that has experienced urbanization and LULC
changes since the 1700s, as well as the location of the temperature stations relative
to these changes. This dataset is developed by the Netherlands Environmental
Assessment Agency and comprises time series of population and land use in the
form of gridded maps for the last 12 000 years (Klein Goldewijk 2001). The latest
version of this dataset (version 3) has a 5 min 3 5 min footprint and incorporates
the information from recent databases on population density (POPD) and land
cover at the subnational level. The methods and data sources used in develop-
ing the HYDE 3 dataset are described in Klein Goldewijk and van Drecht (Klein
Goldewijk and van Drecht 2006).

For this analysis, we used the population density and cropland area between
1700 and 2000 (the most recent data available) at a 50-yr interval. Each yearly
population gridded map shows the estimated population density expressed in
inhabitants per square kilometer for each pixel. The cropland gridded maps
show the area (in km2) of crop for each pixel. Pixel area in this dataset varies
with latitude, with the largest pixels being at the equator (85.9 km2) and the
smallest ones being at the poles (9.5 km2). We divided the cropland area by the
corresponding pixel size to be consistent when comparing the amount of crop in
different areas of the world, creating maps of cropland density (CROPD) per
pixel. Using both population and cropland datasets, we divided the data into
classes described in Table 4.

Table 3. Nighttime imagery thresholds.

Illumination
(%)

Corresponding
pixel DN

Avg POPD
(inhabitants per km2)

Rural <8 unlit, noise 0–5 14
Peri-urban 8–88 dim 6–55 100
Urban >88 bright 56–63 1064
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2.2. Analysis

2.2.1. Estimation of land-cover representation of the GHCNv.2
temperature stations

The first step of the analysis consisted in estimating the present-day relative
occurrence of each land-cover class defined in section 2.1 both worldwide and
within each temperature station’s dataset. The analysis was carried out for the
overall GHCNv.2 dataset and the CRU, GISS, and NCDC subsets of both GHCN
and non-GHCN stations (note that the NCDC subset is equal to the adjusted
GHCNv.2 dataset). Worldwide occurrence was established using the overall
DMSP-OLS, GLCC, and HYDE datasets. Then the corresponding classes were
assigned to each GHCNv.2 stations and the three subsets using their spatial co-
ordinates.

2.2.2. Estimation of land-use/land-cover change to urban areas or
croplands

The second step was to use the LULC historical data included in HYDE to
estimate what percentage of the land has experienced urbanization and/or was
transformed into cropland in the past century (1900–2000). We created two sets of
change classes described in Tables 5 and 6. The HYDE population and cropland
maps were divided into these classes, and the relative abundance of each class was
computed. Each station from the GHCNv.2 dataset, as well as CRU, NCDC, and
GISS subsets, was then assigned its corresponding change classes. The relative
occurrence of each of these classes within each temperature stations datasets was
then compared to their worldwide occurrence.

3. Representativeness of LULC by GHCNv.2 stations
location

3.1. Present-day population and GHCNv.2 metadata

Using the 2003 nightlight imagery as a proxy for current population density, we
see that only 5% of overall world land surface is lit. A large portion of the land
(95%) is unlit and is associated to uninhabited or very low population density areas.
Comparatively, the GHCNv.2 dataset and the three subsets are biased toward urban
areas, as only 26.0%–31.1% of their stations are within rural (unlit) areas. There
are a few issues associated to the use of nighttime light imagery to infer urban
extent, with the most important one being the ‘‘blooming’’ effect: light tends to

Table 4. Population and cropland classes created from HYDE 3 data.

Class
Population

(inhabitants per km2)
Cropland (% pixel

with crop)

1 0–10 (uninhabited) 0 (no crop)
2 10–1000 (small town) 0–25 (very low cropland)
3 1000–5000 (low density urban) 25–50 (low cropland)
4 5000–10 000 (urban) 50–75 (medium cropland)
5 �10 000 (dense urban) >75 (high cropland)
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extend beyond its associated populated area (Small et al. 2005). However, the
results of the nightlight imagery urban classification are consistent with the one of
the IGBP, GE, and HYDE 3 datasets (Table 7), suggesting an urban bias in the
GHCNv.2 dataset of about 14% (although the HYDE 3 data suggest the bias might
be slightly more).

The metadata provided with the GHCNv.2 contains information on the popu-
lation at each of its stations. These data are based on population information that is
now old (Peterson and Vose 1997) and do not reflect recent urban development.
Hansen et al. (Hansen et al. 2001) used nightlight imagery to update the USHCN
metadata. Here, we used the 2003 nightlight imagery classification to evaluate the
quality of the GHCNv.2 metadata population classification. The GHCNv.2 stations
are divided into three classes: 1) rural, where the population is less and equal to
10 000 people; 2) small town, where there are 10 000–50 000 inhabitants; and 3)
urban, where there are more than 50 000 inhabitants. According to these metadata,
more than half of the GHCNv.2 stations are located in rural areas (53.7%), whereas
about 26.9% are in urban settings and 19.4% are in small towns (Table 7c). The
three subsets are similarly divided, although the CRU subset has about 4% fewer
stations in rural areas than the overall GHCNv.2 dataset.

With the 2003 nighttime light imagery, we find that only about 31.1% of the
GHCNv.2 stations are located in truly unlit areas (Table 7a). The correspondence of
this class to the GHCNv.2 metadata rural class is unclear due to the difference in

Table 5. Description of POPD change classes for the period between 1900 and 2000.

POPD change
class

Population change between
1900 and 2000

POPD in 1900 and 2000
(inhabitants per km2)

2000 2 1900 POPD
(inhabitants per km2)

1 Pixel remained uninhabited <10
2 No POPD change <6100
3 Population decrease >2100
4 Small population increase 100–1000
5 Large population increase >1000

Table 6. Description of CROPD change classes for the period between 1900 and
2000.

Cropland change between
1900 and 2000

CROPD change
class

CROPD in
2000–1900 (%)

2000–1900
CROPD (%)

Pixel remained uncultivated 1: Nonurban (rural or small town) 0
2: Nonurban (1900) to urban (2000) 0
3: Urban 0

Cropland was reclaimed 4 250 to 2100
5 0 to 250

Cropland increased 6 50 to 100
7 0 to 50

Pixel kept very low
crop amount

8 <25

Density of crop
remained unchanged

9 50 to 100 (high density) 0
10 0 to 50 (low density) 0
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their definitions: the unlit class is correlated with areas of 14 inhabitants per square
kilometer (Imhoff et al. 2000), whereas the metadata urban class is linked to towns
of �10 000 people with no mention of area. Under the assumption that the two are
comparable, the current GHCNv.2 metadata overestimates by 22.6% the number of
its stations located in rural settings, which is consistent with an increase in pop-
ulated areas in the recent years.

3.2. Land-cover representation

Based on the IGBP dataset (16 classes, ignoring water bodies), the following
land-cover types are the most common: open shrubland (14.1%), barren or sparsely
vegetated (12.5%), snow and ice (12.4%), croplands (10.3%), and evergreen
broadleaf forest (9.2%). Altogether they represent 58.5% of the total land area.

Table 7. Population classification using (a) the 2003 nighttime light imagery; (b) the
HYDE3 2000, the IGBP, and GE data; and (c) the GHCNv.2 population metadata.

(a) 2003 Nighttime light imagery classification

Bright/urban
(%)

Dim/peri-urban
(%)

Unlit/rural
(%) No data

Subsets (No. of
stations)

1064 inhabitants
per km2

100 inhabitants
per km2

10 inhabitants
per km2

GHCNv.2 (7280) 15.0 51.7 31.1 2.2
CRU (4038) 18.1 53.0 26.0 2.9
NCDC (4771) 14.3 55.4 28.0 2.3
GISS (6236) 15.5 53.0 29.3 2.2
World land 0.3 4.7 95.0

(b) Other datasets

2000 HYDE
3 urban

2000 HYDE
3 small town

2000 HYDE
3 rural

>1000 inhabitants
per km2

10–1000 inhabitants
per km2

<10 inhabitants
per km2

GHCNv.2 (7280) 18.1 56.4 25.5
World land 0.7 22.8 76.5
IGBP urban (%)
GHCNv.2 (7280) 14.2
World land 0.2
GE urban (%)
GHCNv.2 (7280) 13.7
World land 0.2

(c) GHCNv.2 stations population classification in metadata

Urban (%) Small town (%) Rural (%)

Subsets (No.
of stations)

>50 000
inhabitants

10 000–50 000
inhabitants

<10 000
inhabitants

GHCNv.2 (7280) 26.9 19.4 53.7
CRU (3756) 30.2 19.9 49.9
NCDC (4771) 26.3 19.0 54.7
GISS (6229) 27.6 19.4 53.0
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Only 35.7% of all GHCNv.2 temperature stations are located within these land-
cover types and about 32%–34% in the case of the CRU, NCDC, and GISS subsets.
As a result, the main world land-cover types are not well represented by these
stations.

The main land-cover types represented in the GHCNv.2 datasets and its three
subsets (CRU, NCDC, and GISS) are croplands (18.9%–21.9%), urban and built up
(14.2%–17.2%), cropland and natural vegetation mosaic (13.9%–14.7%), and grass-
lands (10.7%–11.5%). These areas make up about half the stations, whereas they only
cover 18% of the world according to the IGBP data. This indicates that the temper-
ature stations are biased toward areas affected by human activity (urban and cropland).

Figure 2 summarizes these results. The land-cover classes are classified from left
to right according to their world abundance, from open shrublands (14.1%) to
urban and built up (0.2%). The graph shows clearly how the relative abundance of
each of these classes is different in the temperature stations dataset and subsets.
Four out of the five main land-cover types are underrepresented in the temperature
datasets. The exceptions are (i) croplands, which are overrepresented by about
10%, and (ii) urban and built up, which are overrepresented by 14.2% (GHCNv.2)
to 17.2% (CRU).

Figure 2. Percent land area covered by each IGBP land-cover class compared to
the percent of temperature stations in each class.
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3.3. Ecosystems representation

Considering the GE dataset (95 classes, ignoring the seawater class, which
represents 70.8% of the total area), the following ecosystems are the most abundant
(Table 8): glacier ice (12.1%), bare desert (10.5%), tropical rain forest (6.4%),
semidesert shrubs (6.1%), woody savanna (5.1%), and savanna (5.0%). Together
they represent 45.2% of the land area. Only 15.8% of the GHCNv.2 stations are
within these ecosystems and 13% of the NCDC subset stations (CRU and GISS
stations distributions are comparable to the GHCNv.2 dataset).

The main ecosystems in the GHCNv.2 datasets and its three subsets are as
follows (Table 8): urban (14.3%–16.6%), crops and town (5.3%–6.2%), grass
crops (4.3%–5.1%), crops–grass–shrubs (4.3–5.3%), semidesert shrubs (3.6%–
4.4%), and woody savanna (3.4%–4.1%). The IGBP classification results show
that there is a clear bias toward urban and crop, which are both nonnatural
ecosystems.

Figure 3 shows the 54 most common world land ecosystems classified in order of
decreasing abundance from left to right. The percentage of stations in each class is
also included. The graph shows the difference between the main world ecosystems
and the location of temperature stations. It also outlines the urban and agricultural
bias within these datasets. In the GE classification, only 0.2% of the land is clas-
sified as urban, whereas 13.7% of the GHCNv.2 stations are within urban
boundaries (Table 8). These results are consistent with the data derived from both
the IGBP urban land-cover data and the bright class of the nighttime light imagery.
All of them suggest an urban bias of about 14% within the GHCNv.2 dataset, which
is slightly enhanced (up to 3% more) by the selection of stations for each subset
studied here.

Table 8. The 10 most common world ecosystems (seawater ignored) and percent of
temperature stations within each. The gray shaded area highlights the 10 most
abundant ecosystems in the temperature station dataset and subsets.

Percentage of
land area Percentage of stations

GE class World GHCNv.2 CRU NCDC GISS

12 Glacier ice 12.1 0.5 0.5 0.3 0.5
8 Bare desert 10.5 2.4 2.6 1.9 2.4

33 Tropical rainforest 6.4 1.1 0.8 0.4 0.9
51 Semidesert shrubs 6.1 4.3 4.4 3.6 4.2
91 Woody savanna 5.1 3.9 4.1 3.4 3.8
43 Savanna (woods) 5.0 3.7 3.3 3.5 3.7
31 Crops and town 3.5 6.2 5.3 6.0 6.2
93 Grass crops 2.8 5.1 4.3 5.0 4.6
14 Inland water 2.4 3.4 3.3 3.5 3.3
9 Upland tundra 2.4 0.6 0.5 0.4 0.5
1 Urban 0.2 13.7 16.6 15.8 14.3

94 Crops, grass, shrubs 2.2 4.8 4.3 5.3 5.0
30 Cool crops and towns 0.8 3.7 3.5 4.0 3.6
41 Hot and mild grasses

and shrubs
2.3 3.6 4.1 3.1 3.6
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3.4. Urbanization

Figure 4a shows the change in world population density of the past 300 years as
estimated from the HYDE dataset. In 1700, it is estimated that about 92% of the
land was uninhabited, whereas the remainder had a low population density of

Figure 3. Percent land area covered by each GE ecosystem class compared to the
percent of temperature stations in each class.

Figure 4. Percentage of (a) the world land areas and (b) the GHCNv.2 stations within
each HYDE population class from 1700 to 2000: 1 (uninhabited; solid line), 2
(low POPD; dashed line), and 3–5 (urban; dotted line).
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10–1000 inhabitants per square kilometer. The uninhabited areas of the world
constantly decreased to 76.5% in 2000, whereas urban areas started to expand from
the 1900s. World urbanization, however, still remains small in area, because in
2000 higher-density areas (.1000 inhabitants per square kilometer) are estimated
to only occupy about 0.7% of the overall land surface. This is a little more than the
percentage estimated from the bright class of the nighttime light imagery (0.3%)
but of similar magnitude. Both approaches have inherent errors associated to the
methodology used to compose the dataset, which can explain the slight percentage
variability. For example, the population density distribution in the HYDE dataset is
mostly based on countrywide population data. The population density was then
extrapolated based on a reference map of population density under the assumption
that high population areas remain in the same place over time (Klein Goldewijk
2001). This can potentially result in bias toward higher-density areas.

Figure 4b shows the corresponding percentage of GHCNv.2 stations for popu-
lation classes (Table 4), with the three urban classes grouped into one. The location
of the temperature stations shows a bias toward urban areas, whereas it under-
represents the uninhabited portions of the land. In 2000, 18.1% of the GHCNv.2
stations are identified as part of urban areas (17.5% more than the global per-
centage). Only 25.4% of these stations are within uninhabited areas. The subsets
(CRU, GISS, and NCDC) exhibit similar distributions with respect to the overall
GHCNv.2 dataset.

Figure 5 shows the population change classes defined in Table 5 and their rel-
ative occurrence between 1900 and 2000. During this period, about 75.6% of the
land remained uninhabited. The remainder experienced urbanization or population
increase (5.3%) or kept the same population density (19.1%). A negligible portion
of the world experienced a decrease in population density. The location of the
temperature stations relative to these changes is biased toward areas where pop-
ulation increased (by about 37%) or did not change (13.9%). This distribution
depicts an underrepresentation of areas that remained uninhabited in the last
century by 51.3%.

3.5. Cultivation

Figure 6a shows how the total area of cropland has expanded in the past 300
years. Areas with more than 50% cropland per square kilometer were occupying
0.3% of the land surface in 1700 and have expanded to 7% in 2000. Areas with
no to very low crop [,25% (km2)21] have consistently decreased from 98.7% in
1700 to 85.5% of the world surface in 2000.

Figure 6b shows the corresponding percentage of GHCNv.2 stations within each
of the four cropland density classes. A quarter of the GHCNv.2 stations are located
in areas that were densely cultivated (.75% cropland per square kilometer) be-
tween 1900 and 1950 when only 2% of the overall global land cover belonged to
that class. As a result, areas that had none to a small amount of cropland (,25%
crop per square kilometer), particularly in the past 150 years, are 34.9% under-
represented by the location of the temperature stations (see the dip of the solid
black line on Figure 6b).

Figure 7 depicts the cropland change classes defined in Table 6 and their relative
occurrence between 1900 and 2000. In the past century, 43.2% of the world
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remained nonurban uncultivated land, suggesting that the natural environment was
likely preserved in those areas (although this classification does not differentiate
from, e.g., areas where deforestation has occurred). More than one-third of the land
(36.5%) kept a very low density of crop (,25%), and 12.3% of the world expe-
rienced an increase in cropland areas. The spatial distribution of the temperature
stations and subsets represent well the areas where cropland density has increased
or remained unchanged. However, the distribution underrepresents areas that re-
mained potentially natural (change class 1) by 29.3%. Finally, areas where crop-
land density has decreased are overrepresented by 33.6%. This decrease in crop
area is, in general, associated with a local increase in population.

4. Discussion
The percentage of GHCNv.2 stations within urban areas is 13.7%–18.1%,

depending on the classification used (2003 nightlight imagery, IGBP, GE, or
HYDE 3). Comparatively, the percentage of the world land that is urbanized is
0.2%–0.3% (corresponding to the land portion that is bright on the nightlight
imagery and the urban classes in the IGBP and GE datasets). This indicates that the
locations of temperature stations are biased toward urban areas by 13.5%–17.9%,
depending on the subset and classification method. The station distribution within
the other land-cover classes shows that about one-third of the stations are located in

Figure 5. Percentage of the world land areas and temperature stations within
each population change class for the period between 1900 and 2000
(see Table 5).
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cultivated land (cropland classes). Including stations in urban settings, they rep-
resent about 50% of the stations. Consequently, at least half of the GHCNv.2
temperature dataset was measured in areas where human-induced land-cover
change is a major component in the station history. Also, the location of these

Figure 6. Percentage of (a) the world land areas and (b) the GHCNv.2 stations within
each HYDE cropland class from 1700 to 2000: 1–2 (uncultivated or very low
crop; solid black line), 3 (low crop; solid gray line), 4 (medium crop;
dashed black line), and 5 (high crop; dotted black line).

Figure 7. Percentage of the world land areas and temperature stations within
each cropland change class for the period between 1900 and 2000 (see
Table 6).
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stations overrepresents the urban and in particular the cropland classes compared to
their spatial extent worldwide (only 18.4% of the land worldwide).

On the other hand, widely spread land cover such as open shrubland, bare/
sparsely vegetated, snow/ice, and evergreen broadleaf forests (48.1% of the land
worldwide) are largely underrepresented in the GHCNv.2 dataset, with only 14%
of the stations within these LULC types. The ecosystems classification yields
similar results: glacier ice, bare desert, semidesert shrubs, and tropical forests,
which occupy 35.1% of the world land area according to Olson classification
(Olson 1994a; Olson 1994b), are represented only by 8.2% of the GHCNv.2 sta-
tions (and only 6.1% of the adjusted subset, NCDC). Note that the different subsets
of stations studied here (CRU, GISS, and NCDC) have little impact on these
classification results.

The 1900–2000 historical record of urbanization shows that, as expected, the
locations of the GHCNv.2 and subsets stations are strongly biased toward regions
where population has increased (by about 37%). This distribution results in un-
derrepresentation of areas that remained uninhabited during the past century. In the
total land areas, 75.6% of the areas were identified as having remained uninhabited,
whereas only about 25% of the stations were within those areas.

With regard to the past century evolution of cultivated land, GHCNv.2 and the
three stations subsets represent well areas that have either been and remained
cultivated or the areas where the amount of cropland has increased. However, land
areas where the amount of crop has decreased are overrepresented in those datasets
by 31.6% (GHCNv.2 stations) to 36.2% (CRU stations subset). Finally, areas that
were nonurban and remained uncultivated between 1900 and 2000 are underrep-
resented by about 29%, again suggesting that the temperature stations tend to be in
areas where manmade LULC changes have occurred.

5. Potential implications of the LULC distribution on GAST
To provide a perspective on what the findings regarding LULC distribution could

potentially mean, we conducted an initial assessment by computing the decadal
anomaly trends for the different datasets. The trends reported here are the average
of all trends from all stations within each LULC class. The decadal temperature
trend at each station was computed by removing the temperature annual cycle to
extract monthly-mean temperature anomalies. A linear trend analysis (least squares
method) was performed on the anomalies using the overall temperature record
available at each station. The record length varies significantly between stations
(from 20 to 289 years), starting as early as 1702 (station 10384 in Berlin, Germany)
and ending in 2008. The decadal temperature trends were then grouped according
to the classes defined earlier and summary statistics were computed for each class,
including the mean decadal temperature trend and its 95% confidence interval. A
summary of the trends is presented in Figures 8a–g. The analysis was done with
trends based on present-day population classification following 2003 nighttime
light imagery (Figure 8a), as well as IGBP land cover (Figure 8b), Global Eco-
systems (Figure 8c), HYDE population density in 2000, and past century changes
(Figures 8d–g).

The results are generally comparable and only a subset from the IGBP land
cover is discussed for brevity. The averaged decadal trend for 14 IGBP classes
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ordered from the most (left) to the least (right) abundant worldwide is shown in
Figure 8b. Two classes that include less than 15 temperature stations are shown in
Figure 8b: snow/ice (third most common IGBP class worldwide) and deciduous
needleleaf forest. The long-term trend of the past 300 years reveals that four of the
five most common land-cover types worldwide, which cover .58% of the land,
show a positive temperature trend. The snow/ice class displays the largest average
positive trend (0.328–0.358C decade21). Other significant long-term positive
temperature trends in common LULC occur in evergreen broadleaf forests (0.0618–
0.0778C decade21) and in open shrublands (0.0298–0.0378C decade21). Compar-
atively, most of the GHCNv.2 temperature stations are located in land-cover classes
that have a relatively moderate positive temperature trend (e.g., urban and built-up
areas: 0.0218–0.0228C decade21; cropland: 0.0148–0.0168C decade21). This in-
dicates that, in its current distribution, the GHCNv.2 dataset may miss the largest
long-term positive temperature trends. Savannas and woody savannas also experi-
ence long-term positive temperature trends (0.038–0.048 and 0.018–0.028C decade21,
respectively) but occupy a small portion of the world’s land (2.4%). A few negative
long-term temperature trends are found in evergreen needleleaf forests (20.028 to
20.048C decade21) and deciduous broadleaf forests (20.018 to 20.038C decade21),
both classes that are weakly represented worldwide (4.8% of the world area), and in
cropland/natural vegetation mosaic (20.0138 to 0.0028C decade21), which covers
7.9% of the world land. Trend analysis of other IGBP classes reveals mixed results:
CRU decadal trends are sometimes of opposite sign to the GISS and NCDC trends
(e.g., mixed forests, permanent wetlands, and bare). Differences in the magnitude of
trends are also observed between the datasets in the case of the closed shrubland
class; CRU mean trend is 0.0538C decade21 versus 0.0068 and 0.0088C decade21 for
GISS and NCDC, respectively. Such discrepancies may be partly explained by the
large differences in station number: in general, GISS and NCDC have twice as many
stations as our CRU subset, resulting in a better global distribution.

Decadal temperature anomaly trends of stations located in GE classes are shown
in Figure 8c. Because of the large number of classes, the trends were computed only
for a selected number of GE classes: glacier ice, bare desert, tropical rain forest
(three most abundant classes worldwide), and urban. The largest positive tempera-
ture trends (0.328–0.358C decade21) are observed in the glacier ice class. Long-term
trends of bare/desert ecosystems, the second-most abundant ecosystem worldwide,
are weak: slight positive trends for GISS and NCDC (0.018–0.028C decade21) sta-
tions and slight negative trends for CRU (20.0028C decade21). Tropical rain forests
(third-most abundant ecosystem) exhibit a positive trend (0.078–0.098C decade21),
which is similar to the long-term positive trend identified in the evergreen broadleaf

 
Figure 8. Mean decadal temperature anomaly trends for the groups of CRU, GISS,

and NCDC stations with overall temperature record available at each
station for (a) land classes derived from 2003 nighttime light imagery;
(b) IGBP land-cover classes; (c) GE ecosystem classes; (d) HYDE POPD
classes in 2000; (e) HYDE POPD change from 1900 to 2000; (f) HYDE crop
density classes in 2000; and (g) HYDE crop density change from 1900 to
2000.
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forest IGBP class (Figure 8b). The urban ecosystem represents only 0.2% of the GE
ecosystems but is largely overrepresented in the GHCNv.2 dataset. All subsets agree
in showing a slight long-term positive temperature trend (0.028C decade21), con-
sistent with the one observed in the IGBP urban class.

The mean long-term decadal temperature anomaly trends of stations grouped
according to population density in 2000 (defined in Table 4) are shown in Figure 8d.
All populated areas are characterized by long-term positive temperature trends.
Stations located in urban areas (5000–10 000 inhabitants per square kilometer)
exhibit the largest trends (0.048–0.058C decade21), followed by stations in dense
urban areas and low-density urban areas (both 0.038C decade21). Small towns
(10–1000 inhabitants per square kilometer) experience very little temperature in-
creases (0.0048–0.0088C decade21). The uninhabited stations also show average
long-term positive temperature trends (0.028–0.048C decade21) similar to the one
identified in the unlit class of the 2003 nighttime imagery.

Figure 8e displays the mean long-term decadal temperature anomaly trends of
stations population change classes (as defined in Table 5 for 1900–2000). The
‘‘population decrease’’ class, with only four stations, is excluded from the analysis
(this class is also insignificant worldwide, with less than 0.1% of the land). All
subsets agree in showing positive temperature trends increasing with population
density change (e.g., 0.038C decade21 in areas that experienced large density in-
crease). Areas with no population density change show no significant trend
(0.0008–0.0058C decade21). In areas that remained uninhabited, trends vary
from 0.028 to 0.048C decade21.

The long-term mean decadal temperature anomaly trends of stations grouped
according to crop density classes in 2000 (Table 4) are displayed in Figure 8f. For
all subsets, the largest positive trend occurs in stations located in uncultivated areas
(0.038–0.048C decade21). Cultivated areas exhibit relatively little temperature
changes (0.008–0.018C decade21), in agreement with the results found in the IGBP
cropland class (0.018–0.028C decade21).

Figure 8g shows the long-term decadal temperature anomaly trends of stations
grouped according to crop density changes over the past century (as defined in
Table 6). Class 9 (density of crop remained unchanged; low density) is only rep-
resented by one station in all subsets and as a result has been removed from the
analysis (it also represents a negligible portion of the land worldwide, as shown in
Figure 7). For most of the change classes, a positive temperature trend is observed,
with the largest ones (0.038–0.058C decade21) occurring in areas that remained
uncultivated (nonurban and urban). In cultivated zones, changes in crop density
seem to affect temperature trends: areas where the cropland density increased by
more than 50% exhibit positive trends (0.028–0.038C decade21) as well as areas
where cropland decreased by more than 50% (0.028C decade21). Areas with small
increase or decrease in cropland surface (0%–50%), however, show weakly posi-
tive or negative trends (e.g., 20.018C decade21 for GISS and NCDC).

6. Conclusions
Using over 5000 stations and different LULC datasets, a synthesis regarding the

representation of the current GHCN monthly temperature dataset (GHCNv.2) was
successfully conducted.

Earth Interactions d Volume 15 (2011) d Paper No. 6 d Page 20



Our results confirm the findings from Hansen et al. (Hansen et al. 2001) that the
GHCNv.2 metadata are outdated. According to the 2003 nighttime light imagery
classification, the metadata overestimate the percentage of stations within rural
(unlit) areas by 22.6%. Consequently, the stations classified as being within urban
and small towns are underestimated in the GHCNv.2 metadata. The results of the
nightlight classification are consistent with the ones from the IGPB, GE, and
HYDE 3 datasets and confirm the robustness of nightlight imagery as a proxy for
urban/rural areas.

Long-term temperature trends in cropland areas of the world show a slight pos-
itive trend (0.018–0.028C decade21), whereas urban classes exhibit slightly higher
values (0.028C decade21 on average and increases up to 0.058C decade21 with
population density). These results are in agreement with urban warming studies such
as those reported in Oke (Oke 1987) and Oke and Hay (Oke and Hay 1998). These
two classes, which are overrepresented in the GHCNv.2 dataset, have smaller long-
term positive temperature trends compared to more abundant land-cover classes
worldwide such as open shrublands (0.038–0.048C decade21) and evergreen
broadleaf forests (0.068–0.088C decade21). This indicates that the GHCNv.2 may be
missing larger regional long-term positive land temperature trends. As a result the
long-term land surface temperature increases would be higher than indicated by the
GHCN-based GAST analyses during the time period of this record.

The evolution of cultivated land over the past century shows that the GHCNv.2
and the three stations subsets represent well areas that have been and remained
cultivated or where the amount of cropland has increased. However, land areas
where the amount of crop has decreased are overrepresented by 31.6% (GHCNv.2
stations) to 36.2% (CRU stations subset). Finally, areas that were nonurban and
remained uncultivated between 1900 and 2000 are underrepresented by about 29%;
such a distribution suggests that the temperature stations tend to be in areas where
manmade LULC changes have occurred. The largest positive temperature trends of
all crop change classes (0.038–0.058C decade21) occur in the overrepresented
‘‘areas remained uncultivated and nonurban’’ class, whereas the underrepresented
‘‘cropland was reclaimed’’ class shows smaller trends (0.008–0.028C decade21).
These results again suggest that GAST computations from GHCNv.2 data could
have missed larger positive temperature trends over the period of record.

The scientific level of understanding on how LULC affect climate is low and the
scientific community should focus on better understanding the related impacts,
improving the global distribution of temperature stations network, and updating the
descriptions of the LULC and other metadata for each station (including photo-
graphic documentation) to address this issue. The analysis presented in this paper
should also be updated with more recent temperature datasets and land-use met-
adata. The trend analysis exercise was undertaken to gain a perspective on the
potential impact of the land-cover distribution on the surface temperatures, and it
should be repeated in a more formal manner with historical land-use change data,
more detailed metadata, and up-to-date datasets in a follow-up study.
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