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[1] Land-use/land-cover (LULC) change has been recognized as a key component in
global climate change, and numerous climate modeling studies at regional to global scales
document this. The research strategies have invariably been to first conduct baseline
simulations of current conditions to evaluate model performance. Then simulation of
regional climate with land cover changes (LCC) implemented within the model allows
differences with the baseline simulation to be used as evidence of global to regional-
scale climate impacts of LCC. However, even state-of-the-art regional climate models
require two data sets to conduct reasonable baseline simulations. These are
representative current land cover and atmospheric information over the study region. In
frontier and developing areas (where most of the rapid land-use conversion is taking
place), these data sets are frequently unavailable and the errors in simulations are due to
either inaccurate land cover, insufficient atmospheric information, nonrepresentative
model physics, or a combination of one or more of the above. This study shows that in
one frontier region, that surrounding the Cordillera de Tilarán of Costa Rica, the
accuracy of simulating clouds decreases by 1% to 3% if default model land cover
information is used. If the atmospheric data sets used are the ones usually available to
researchers (with land cover information held constant), then the model accuracy is
reduced by 21% to 25%. Model runs without updated land cover or atmospheric
information reduce model accuracy slightly further. Precipitation comparisons also
provide similar results. This study thus shows that the critically important data set for
conducting accurate simulations is not land cover information but atmospheric
information. Researchers may similarly get significant increase in the accuracy of their
baseline simulations elsewhere by using radiosondes/rawinsondes over their study
region. Finally, since atmospheric information is not available for different landscape
scenarios, assessments of the relative role of LULC change will have to continue to rely
on using the standard atmospheric data set and the acceptance that the use of more
detailed atmospheric data to initialize and provide lateral boundary conditions would
have reduced the uncertainties in such landscape sensitivity studies.
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1. Introduction

[2] Human activities are transforming the surface of the
Earth to enhance the proportion of primary productivity for
human consumption [Rojstaczer et al., 2001; Vitousek et al.,
1986]. This results in decreasing the proportion remaining
to perform other ecosystem services such as regulation of
floods, climate, disease, and habitats for other species
[DeFries et al., 2004].
[3] The current rate of forest conversion is extremely high

in most tropical regions of the world and these changes are
known to have an important impact on ecosystems felt at
local and regional scales through atmospheric changes
[Laurance et al., 2004]. Land cover conversion from one
type to another type results in atmospheric changes because
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the dynamic, thermodynamic, and radiative processes that
couple the Earth’s surface with the atmosphere are land
cover specific. When LCC occur, the unique coupling
process associated with a specific land cover pattern
changes [Chase et al., 1999; Houghton et al., 1999; Pielke,
2001]. However, land-atmosphere coupling being a nonlin-
ear process, the impact of LCC on climate can be most
effectively estimated through numerical modeling.
[4] Many numerical modeling experiments have investi-

gated land-atmosphere coupling [Charney, 1975; Xue,
1997; Zheng and Eltahir, 1997; Pielke et al., 1999; Chase
et al., 2000; Pielke et al., 2007]. These experiments often
used the National Centers for Environmental Prediction
(NCEP) Reanalysis data [Kalnay et al., 1996] to provide
the initial and lateral boundary conditions [e.g., Marshall et
al., 2004; Pielke et al., 2007]. Numerical modeling experi-
ments have also been performed to estimate potential future
climate changes by using projected possible future LCC in
the numerical simulations [Feddema et al., 2005]. However,
even with good representation of the physics of land-
atmosphere coupling, a numerical model may not be able
to accurately simulate atmospheric changes due to LCC in
the absence of accurate atmospheric and land cover data
sets. Detailed and accurate data sets are, however, difficult
to obtain in frontier and developing areas where the lack of
infrastructure precludes the launching of regular radio-
sondes and development of high-quality land cover infor-
mation through major land cover classification efforts.
Therefore, nearly all studies that look at the impacts of
LCC on regional climate in frontier and developing areas
lack these data sets to varying degrees of accuracy. For
example, if the land covers are coarsely classified, a given
land cover type may be assigned a single Leaf Area Index
(LAI) despite significant site to site variations. Another
example is numerical simulation for a site using the radio-
sondes from another site several hundreds of kilometers
away owing to a lack of nearby radiosondes. Pielke et al.
[1989] have shown for example that the placement of
atmospheric soundings is critically important in accurately
defining the initial atmospheric structure.
[5] Early studies were also done at coarse resolution [e.g.,

Shukla et al., 1990; Nobre et al., 1991] often using standard
data sets that necessarily had inaccurate representation of
the land surface and atmospheric information. These studies
provided a good indication of the sensitivity of regional
climate to LCC, but the inaccuracies in land cover and
atmospheric data produced inaccuracies in the baseline runs,
and hence, any projections were suspect. With the increase
in computing power three things have happened: (1) high-
resolution modeling studies are now possible which allow
validation against high-resolution observations; (2) site
specific projections are now possible; and (3) multiple
model simulations can be performed to estimate the errors
in simulations that occur owing to inaccuracies of input land
cover and atmospheric data sets in frontier and developing
areas if accurate validation data sets are available.
[6] This study conducts high-resolution model simula-

tions using the Regional Atmospheric Modeling System
(RAMS) [Pielke et al., 1992] such that each model cell
exactly overlaps each satellite observation which is also
time coincident. We also compared daily simulated and
observed rainfall from 92 locations. Furthermore, we also

compared model profiles of temperature and dewpoint
temperature with nearly time coincident and spatially col-
located rawinsonde information to: (1) evaluate the errors in
simulations from incomplete land cover and/or atmospheric
information in a frontier region; and (2) evaluate the relative
importance of land cover and atmospheric information for
model simulation accuracy.

2. Study Region and Experiment Design

[7] The RAMS modeling domain in this study was
centered on the Monteverde cloud forest (10.25�N,
84.7�W), situated along the crest of the Cordillera de
Tilarán, one of the northwest-southeast trending ranges
comprising the continental divide in Costa Rica. The
northeasterly trade wind blows inland from the Caribbean
Sea, crosses the lowlands of Costa Rica and then encounters
these mountains that separate Costa Rica into the Atlantic
(or Caribbean) side and the Pacific side. The trade winds are
forced up these mountains to form orographic clouds on the
windward Caribbean side [Lawton et al., 2001; Nair et al.,
2003; Ray et al., 2006]. Immersion of forests in clouds
along the slopes of the continental divide is responsible for
one of the richest cloud forest ecosystems in the world.
[8] There are four reasons for choosing this particular site

for conducting our modeling experiments. First, we had
high-quality atmospheric data sets that were obtained during
a National Center for Atmospheric Research (NCAR)
supported intensive field campaign called Land Use Cloud
Interaction Experiment (LUCIE) in March 2003. Second,
our modeling group has more than 3 decades of experience
with the land cover of the study region. Third, we have an
extensive validation data set available for this region.
Fourth, this region is at the center of biodiversity in Central
America and it has been suggested that regional climate
changes could have resulted in the observed species extinc-
tion in the Monteverde cloud forests [Pounds et al., 1999].
[9] Four different combinations of input data sets with

and without extra land cover and/or atmospheric data sets
are possible and accordingly four simulations were con-
ducted for the period 1–14 March, 2003: (1) model run with
advanced land cover information and extra (i.e., besides the
standard) atmospheric information derived from the LUCIE
experiment (Model O); (2) model run with the extra LUCIE
atmospheric data set but default land cover information
(Model LU); (3) model run with advanced land cover
information but atmospheric information provided to the
numerical model are standard inputs based on the NCEP
Reanalysis since this is the data set used for many land use
change sensitivity experiments (which in reality is a data set
without any LUCIE rawinsondes from this frontier region;
see section 3 for further description (Model ATM)); and
(4) model run with default model land cover and standard
atmospheric information (Model LUATM). We acknowl-
edge that this short-term simulation can only provide an
indication of the relative importance of atmospheric and
land cover data sets and our results, of course, apply only
for the period simulated. A more detailed investigation for
different seasons and different years is needed. This is not
possible for the current study area since special radiosondes
were not launched for an extended period in this, or other
similar locations.
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[10] The simulations used a two nested grid configuration
(Figure 1) with the outer grid having a 4-km grid spacing
covering a domain of 400 by 160 km extending into the
ocean and insulating the finer grid from lateral boundary
effects and at the same time providing inputs of larger-scale
atmospheric flow into it. The finer nested grid had 1-km
spacing covering 62 by 42 km without any coverage of the
ocean. In the vertical a stretched grid with a grid stretch
ratio of 1.2 and grid spacing that varied from 20 m near the
surface to 750 m higher up in the atmosphere was used.
Only five points along the lateral boundaries were nudged
with a time scale of 900 s and nudging strength exponen-
tially decreasing toward the domain interior. The Klemp and
Wilhelmson [1978] lateral boundary conditions were applied
to the coarse grid, to allow disturbances to propagate out of
the model domain without strongly reflecting back into the
interior. The explicit microphysical parameterization [Walko
et al., 2000] and the atmospheric radiative transfer scheme
of Harrington and Olsson [2001] that accounts for the
effects of clouds and water species in the atmosphere was
utilized. In the horizontal a deformation based scheme was
used to represent diffusion, while in the vertical, diffusion
was parameterized using the Mellor and Yamada [1982]
scheme.
[11] An average of 2.5 m was chosen as the depth of the

soil layer though the soils prescribed were themselves
spatially heterogeneous as determined from the FAO soil
database for the study region [Webb et al., 1992; Food and
Agriculture Organization, 1971; Gerakis and Baer, 1999].
In situ observations collected from the study area during
March 2003 do not show significant differences of soil
saturation as a percent of field capacity up to a depth of 1 m
for forested and deforested regions [Ray et al., 2006] and
varies between 10 and 15%, 10–20% and 25–30% at 20-,
50- and 100-cm soil depth. However, field observations
suggest pasture grasses are more stressed during the dry

season than are trees, as might be the case if trees have
access to water stored in deeper soil layers, a phenomenon
also observed in the Amazon [Huete et al., 2006]. Conse-
quently, the initial soil saturation prescribed in the simu-
lations varied from 0.1 at the surface, 0.2 at 50 cm depth, to
0.3 at 1.0 m depth and linearly increased to 0.8 at 2.5 m soil
depth to represent a soil moisture profile where the forest
vegetation has access to deep soil moisture and is less water
stressed compared to deforested areas, consistent with the
field observations. The sea surface temperature prescribed
was a constant value of 300 K as determined from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
overpass scenes for the simulation time frame.
[12] Figure 1 shows the differences in the updated versus

the default land cover. 52.08% of the outer grid has identical
land cover. The presence of Evergreen Needleleaf Forest
(pink colors in the default land use panel of Figure 1) is an
error. These forests are not found in Costa Rica. Perhaps the
misclassification was due to spectral signatures similar to
those of Evergreen Needleleaf Forests found elsewhere. In
fact, even the updated land cover maps had this misclassi-
fication, which we corrected and changed to Evergreen
Broadleaf Forest. The rectangular box in the coarser grid
(Figure 1, left) shows the location of the inner high-
resolution grid and is enlarged in Figure 1 (right). Only
8.14% of the inner grid has land cover identical to the
default land cover (Figure 1, inner grid default land use
panel). The locations of identical land cover are plotted in
Figure 1 (bottom) and are mostly composed of Evergreen
Broadleaf Forests.

3. Data and Method

[13] The models were initialized and nudged forward in
time using a variety of data sets. The quality of the
simulations depends critically on the quality of these data

Figure 1. Comparison of the differences in LU information due to updated LU and model default LU.
Gray areas in the bottom panels correspond to those areas where there are differences in the land cover
between the updated and default land use prescription.
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sets. In frontier and developing areas such as northern Costa
Rica site-specific high-quality climate simulations may be
desired for conservation and development purposes but a
lack of high-resolution land cover and atmospheric data sets
hinders accurate simulation. The usual atmospheric data sets
available such as the NCEP Reanalysis [Kalnay et al., 1996]
(data available from: http://dss.ucar.edu/datasets/ds090.0/),
upper air (data available from: http://dss.ucar.edu/datasets/
ds351.1/), and surface observations (data available from:
http://dss.ucar.edu/datasets/ds461.0/) have serious short-
comings. The problem is that, owing to a lack of weather
stations, upper air and surface observations are often not
available. This shortcoming is also present with other
reanalyses such as the North American Regional Reanalysis
(NARR), since the data it uses to construct the analysis
fields are essentially the same as in the NCEP Reanalysis.
Thus for frontier and developing areas, most standard
atmospheric data sets can be considered as low quality.
[14] During the LUCIE field campaign coincident rawin-

sonde launches were conducted over several paired forested
and deforested sites in the Caribbean lowlands of northern
Costa Rica at 3-h intervals starting at 0600 local time (LT)
to 1800 LT [Ray et al., 2006]. Eighty-six of these rawin-
sonde observations were included in the current study
(Table 1). When these rawinsondes were (1) included
together with the standard atmospheric profile data sets
from NCAR and then (2) the Barnes objective analysis
scheme used to objectively analyze the combined data it
resulted in superior initial as well as lateral boundary
conditions for model runs. This data set is what we are
referring to as high-quality atmospheric data sets. Quantifi-
cation of the impact of not using high-quality atmospheric
data sets for conducting model simulations can then be
determined by conducting a numerical simulation with the
standard low-quality atmospheric data set but retaining the
high-quality land cover. This ensures that the error signal is
from the usage of lower-quality atmospheric data.
[15] On the contrary, we would also like to quantify the

impact of using/not using high-quality land cover informa-
tion to contrast the importance between atmospheric and
land cover information. In RAMS, the land-surface pro-
cesses are represented by the submodel called the Land
Ecosystem Atmosphere Feedback-2 (LEAF-2). The LEAF-
2 submodel accounts for the energy and moisture transfers
between atmosphere and soil, water, snow, and vegetation

Table 1. List of the Rawinsonde Location and Time of Launch for

Those That Were Utilized in This Study

Rawinsonde Number Day UTC Time Latitude Longitude

1 1 1800 10.453 �83.704
2 1 1500 10.453 �83.704
3 2 1500 10.468 �84.457
4 2 1800 10.454 �83.704
5 2 1800 10.473 �84.469
6 2 2100 10.454 �83.704
7 2 2100 10.473 �84.469
8 3 0000 10.454 �83.704
9 3 0000 10.473 �84.469
10 3 1200 10.453 �83.704
11 3 1200 10.473 �84.469
12 3 1500 10.454 �83.705
13 3 1500 10.473 �84.469
14 3 1800 10.454 �83.704
15 3 1800 10.473 �84.469
16 3 2100 10.454 �83.704
17 3 2100 10.473 �84.469
18 4 0000 10.454 �83.705
19 4 0000 10.473 �84.469
20 4 1200 10.454 �83.704
21 4 1200 10.473 �84.469
22 4 1500 10.454 �83.704
23 4 1500 10.473 �84.469
24 4 1800 10.454 �83.704
25 4 1800 10.473 �84.469
26 4 2100 10.454 �83.704
27 4 2100 10.473 �84.469
28 6 1200 10.728 �84.556
29 6 1500 10.728 �84.556
30 6 1500 10.540 �84.020
31 6 1800 10.728 �84.557
32 6 1800 10.540 �84.020
33 6 2100 10.728 �84.557
34 6 2100 10.540 �84.020
35 7 1500 10.728 �84.557
36 7 1200 10.728 �84.557
37 7 0000 10.728 �84.557
38 7 0000 10.540 �84.020
39 7 1800 10.728 �84.557
40 7 1800 10.540 �84.020
41 7 2100 10.728 �84.557
42 7 2100 10.540 �84.020
43 8 0000 10.728 �84.557
44 8 1500 10.728 �84.557
45 8 1500 10.540 �84.020
46 8 1800 10.728 �84.557
47 8 1800 10.540 �84.020
48 8 2100 10.728 �84.557
49 8 2100 10.540 �84.021
50 9 0000 10.728 �84.557
51 9 0000 10.540 �84.020
52 10 1200 10.688 �84.180
53 10 1200 10.362 �84.591
54 10 1500 10.688 �84.180
55 10 1500 10.362 �84.591
56 10 1800 10.688 �84.180
57 10 1800 10.362 �84.591
58 10 2100 10.688 �84.180
59 10 2100 10.362 �84.591
60 11 0000 10.688 �84.180
61 11 0000 10.362 �84.591
62 11 1200 10.688 �84.180
63 11 1200 10.362 �84.591
64 11 1500 10.688 �84.180
65 11 1500 10.362 �84.591
66 11 1800 10.688 �84.180
67 11 1800 10.362 �84.591
68 11 2100 10.688 �84.180
69 11 2100 10.362 �84.591
70 12 0000 10.688 �84.180
71 12 0000 10.362 �84.591
72 12 1500 10.688 �84.18

Table 1. (continued)

Rawinsonde Number Day UTC Time Latitude Longitude

73 12 1500 10.362 �84.591
74 12 1800 10.688 �84.180
75 12 1800 10.362 �84.591
76 12 2100 10.687 �84.180
77 12 2100 10.362 �84.591
78 13 1500 10.687 �84.180
79 13 0000 10.687 �84.180
80 13 0000 10.362 �84.591
81 13 1800 10.687 �84.180
82 13 1800 10.362 �84.591
83 13 2100 10.687 �84.181
84 13 2100 10.362 �84.591
85 14 0000 10.687 �84.180
86 14 0000 10.362 �84.591
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and allows for specification of multiple types of land use at
individual model cells. LEAF-2 has a default land-surface
type database which is a 30-s resolution cross-referenced
Olson Global Ecosystems (OGE) data set [Walko et al.,
2000]. The values of the biophysical variables such as
emissivity, LAI, and roughness length of each land cover
type in this default database is represented by a table in
LEAF-2. The seasonality of these biophysical variables in
LEAF-2 is computed from the information of latitude,
longitude, and time of the year during the model run. The
OGE data set was derived from the Global Land Cover
Characterization (GLCC) database, which was based pri-
marily on continental-scale unsupervised classification of
1-km monthly Advanced Very High Resolution Radiometer
(AVHRR) data spanning from April 1992 through March
1993 [Loveland et al., 2000]. Since each land cover cate-
gory has specific land surface parameters prescribed in the
model, each land cover type has nearly identical biophysical
properties when the study region is of regional scales. This
obviously is not true. Using this default land cover for the
RAMS simulations would then be similar to the use of low-
quality land cover information.
[16] RAMS however allows the user to specify realistic

land cover characteristics derived from other sources such
as satellite data. High-quality land cover information was
derived from the global land-use categorization at 1-km
spatial intervals developed by the University of Maryland
(UMD) [Hansen et al., 2000] using MODIS imagery. This
was transferred to the RAMS land cover category and the
misclassification of the Monteverde cloud forests as Ever-
green Needleleaf was corrected to Evergreen Broadleaf.
Moreover LAI, a crucial input characteristic for the vege-
tation parameterization within RAMS, is also specified
using MODIS derived LAI at 1-km increments [Myneni et
al., 1997; Knyazikhin et al., 1998] available at 8-day
intervals. The LAI values used in this study are based on
MODIS imagery acquired over the study area during the
time period 6–13 March 2003. Rooting depth was corrected
to be representative of the study area [Ray et al., 2006]. This
combination of heterogeneous LAI, rooting depths and land
use classes in turn creates spatial variations of soil moisture
and energy fluxes.
[17] Since we have the model default land cover as well

as the more recently updated land cover information, we can
now quantify the simulation errors due to inaccurate land
cover prescription in the numerical simulation. We can then
compare and quantify whether land cover or atmospheric
information leads to larger errors in the numerical simula-
tions in frontier and developing areas. Note that all previous
studies in frontier and developing areas had errors of both
types and the relative importance of each error type is as yet
unknown.
[18] Finally, we also need a consistent method for quan-

tifying the simulation accuracies and errors. First, we
compared the simulated precipitation against observed pre-
cipitation. We had 92 rainfall locations over the entire
simulation domain and thus 92 cells out of the total 4000
cells (4-km spatial resolution) over the outer domain were
collocated for the comparisons. For the inner grid the
comparison was possible with a very small sample size (8
cells out of 2604) as can be expected owing to the
remoteness of the inner grid and smaller spatial extent, thus

preventing any robust statistical conclusions for the inner
grid. We used the root mean square error (RMSE) for
estimating the simulation accuracies of the four model types
in each case which is defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Oi � Sið Þ2

n

vuuut
; ð1Þ

where Oi is the observed precipitation at location i, Si is the
model simulated precipitation at this location and n (92 for
outer and 8 for inner grid, respectively) is the number of
comparisons. Robustness of the comparisons would how-
ever increase if we could conduct a complete point-to-point
comparison. Comparison of simulated clouds with observed
clouds at 1-km spatial resolution provides such a possibility
and thus only for the inner grid we conducted a complete
point-to-point comparison of simulated clouds with those
detected from the Geostationary Operational Environmental
Satellite (GOES) 8 imagery using the structural thresholding
algorithm [Nair et al., 1999; Ray et al., 2003]. Previous
studies have conducted both subjective validation [Pielke,
1974; Baidya Roy and Avissar, 2002], and point and pattern
quantitative validation [Segal and Pielke, 1981; Shaw et al.,
1997; Ray et al., 2006] to prove that RAMS accurately
simulates the atmospheric dynamics. This point-to-point
quantitative validation is rigorous as both possibility of
spatial and temporal displacement of the predicted and
observed clouds are removed which according to Pielke
[2002] could yield a poor verification of model simulation.
[19] For each cloud comparison one can get two possible

prediction errors and two possible prediction accuracies. A
false positive (FP) occurs when according to the simulation,
the model cell has a cloud, but observations (i.e., GOES)
show that there was no cloud. A false negative (FN)
conversely is the case when there is a GOES observed
cloud but the simulation for the model cell produces no
cloud. Similarly, two prediction accuracies are possible: true
positive (TP) when both the simulation and observation
matches, i.e., both have clouds, and true negative (TN)
when both model cell and GOES observation show that
there are no clouds. The sum of FN and TP is then the real
positive (RP), the actual number of times there is a GOES
observed cloud. The performance of presence/absence is
normally summarized in an error matrix [Fielding and Bell,
1997]. Using the error matrix tabulation of FP, FN, TP, TN,
and RP, a variety of error or accuracy measures can be
calculated. We use the Percent Correct Metric (PCM) to
estimate the accuracy of the simulations in each case
(equation (2)).

PCM ¼ 100
TP

RP

� �
: ð2Þ

[20] We also determined the threat score (TS) [Giorgi and
Bates, 1989; Olson et al., 1995; Zhao and Carr, 1997;
Pielke, 2002], which is a measure of the accuracy of the
model in simulating clouds for any given comparison
(equation (3)). It varies from 0 to 1. A TS score of 1
indicates a perfect simulation and the simulation accuracy
decreases as the TS score decreases. The TS score is thus a
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measure of both spatial and temporal forecast skill and is
defined as

TS ¼ C

F þ O� Cð Þ ; ð3Þ

where C is the number of grid cells where the simulated
clouds was confirmed by GOES observation, F is the
number of grid cells where clouds were simulated, and O is
the number of cells where the GOES satellite observed
clouds. The model comparisons with clouds were excluded
for the 3 days of 5, 9, and 14 March when rawinsondes were
not launched during the LUCIE field campaign.

4. Results

[21] Previously, all numerical experiments dealing with
LCC and regional climate changes used hypothetical data
sets (see papers cited by Kabat et al. [2004] and Cotton and
Pielke [2007]). With the availability of satellite derived land
cover information, the baseline simulations now have access
to better land cover representation [e.g., Baidya Roy and
Avissar, 2002; Pitman et al., 2004; Ray et al., 2006; Ge et
al., 2007]. Detailed atmospheric information however is
generally still lacking in the frontier and developing areas.
Moreover, validation data is either missing or validation is
conducted against data sets that may themselves have errors
(for example comparing simulated rainfall with coarse
resolution, temporally inconsistent and/or empirically de-
rived rainfall from satellite cloud top radiances). In this
section we summarize the results of our quantitative com-
parisons of model simulations with observations. The result
is a quantification of inaccuracies researchers may expect
when they know that their prescribed land cover and/or
atmospheric information is deficient. Since the soil vegeta-
tion atmosphere transfer (SVAT) process could also impact
model performance [Pitman et al., 1999; Henderson-Sellers
et al., 2002; Matsui et al., 2007] in a follow-up paper we
will evaluate the impact of SVAT processes on the quality of
model simulations, i.e., conduct simulations with LEAF3
RAMS [Walko and Tremback, 2005] instead of LEAF2
RAMS [Walko et al., 2000].

4.1. Comparisons Against Observed Rainfall

[22] For the outer grid (4-km spatial grid increment)
Model O has lower RMSE compared to the model ATM

on 8 days whereas model LU had lower RMSE than model
LUATM on 7 days (Table 2). The RMSE for total precip-
itation over the entire simulation period was 31.3 mm and
39.3 mm for models O and LU respectively and 40.6 mm
and 49.8 mm, respectively, for models ATM and LUATM.
Since the only difference was atmospheric information it
appears that improving atmospheric information leads to
better precipitation simulations. On the other hand when
models O and LU are compared on 6 days precipitation
simulations improved owing to better LU information but
on another 6 days it was worse. Similarly when models
ATM and LUATM were compared on 4 days improved land
cover improved precipitation simulations, but on 4 days it
was worse and on another set of 4 days they were compa-
rable. While the precipitation comparisons appear to show
that improving atmospheric information improves precipi-
tation simulations whereas improving land cover informa-
tion may not always improve precipitation simulations we
would like to point out that the sample size is quite small.
Precipitation comparisons often suffer from comparisons
conducted with a small set of validation data. For the inner
grid the comparisons were even more tenuous as only
8 comparisons were available and thus not pursued any
further. Cloud cover comparisons however provided a
comparison against independent observations for each of
the 2604 cells and can be considered a robust indicator of
model performance.

4.2. Comparisons Against Cloud Cover

4.2.1. Accuracy of Model O
[23] Model O gave an entire range of PCM accuracy for

the 110 distinct times when a GOES scene was available to
conduct our accuracy assessment. The values ranged from
2% to 100% with a mean and median of 69.90% and
74.31%, respectively (Table 3). Over cloud forests (CF)
the range was 5.6% to 100% (Figure 2a) with a mean of
77.51% and a median of 82.36% (Table 3). Over noncloud
forest (NCF), the range was 1.6% to 100% with mean
and median values of 69.16% and 73.84%, respectively
(Table 3). Figure 2b shows the performance of model O for
each comparison. Out of 11 days, the model generally
performed well, except for 6 March between 1215 UTC
(0615 LT) to 1715 UTC (1115 LT) when the model simulated
few clouds over the study domain though GOES imagery
shows that there were, in fact, more clouds. Table 4 shows the
corresponding TS averaged over the 110 comparisons. Over
the entire region the averaged TS was 0.46, whereas over CF
and NCF the values were 0.55 and 0.45, respectively.
4.2.2. Accuracy of Model LU
[24] Model LU used default model land cover and in-built

information of land cover properties such as LAI. However,
the initial soil moisture and soil type information was
updated to reflect those of the study region. Thus with
respect to initial soil moisture, soil types, and soil depths,
this model run was identical to model O differing with it
only in its land cover. A hypothetical distribution of soil
moisture profiles could have been used but we chose to
conduct the simulation using default land cover with ob-
served soil moisture and soil texture information to get the
impact of only the land cover differences. Our reasoning is
that soil moisture and texture impacts the accuracy of
simulations [Niyogi et al., 1999] and is particularly hard

Table 2. RMSE Associated With Simulating Precipitation for the

Four Models

Day Model O Model LU Model ATM Model LUATM

2 Mar 3.42 2.57 9.73 8.29
3 Mar 4.90 3.74 6.02 7.64
4 Mar 4.77 3.97 3.13 3.11
5 Mar 3.11 2.64 8.14 11.93
6 Mar 6.25 5.40 2.05 1.88
7 Mar 4.08 5.12 2.31 2.38
8 Mar 5.74 7.03 8.36 6.79
9 Mar 4.99 6.60 5.67 11.19
10 Mar 4.70 4.86 10.94 9.89
11 Mar 5.36 4.04 0.85 0.87
12 Mar 8.30 11.59 14.40 17.97
13 Mar 8.46 14.19 10.67 8.64
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to obtain in frontier regions. On the contrary, it is easier to
obtain LAI information and accurate land cover classifica-
tion from analysis of higher-resolution satellite imageries.
Thus in general, models can be run with updated land cover
information but not the observed soil moisture values so one

needs to compare model runs that differ simply in this
information. Several studies such as those by Ge et al.
[2007] in East Africa and Xue et al. [2004] in East Asia and
West Africa have shown the importance of prescribing
accurate land cover information for rainfall simulations.

Figure 2. Model O (model with updated LU and extra rawinsonde information) performance over
(a) cloud forest locations as identified in the updated LU and (b) noncloud forest location.

Table 3. Mean and Median Accuracy of Models O, LU, ATM, and LUATM Over the Entire Study Region, Cloud Forest Locations,

Noncloud Forest Locations, and Regions With Identical LU Among the Four Models

Mean Median

O LU ATM LUATM O LU ATM LUATM

Entire region 69.90 67.49 45.91 44.56 74.31 71.31 46.75 47.12
Over cloud forests locations 77.51 76.32 51.74 51.26 82.36 81.75 56.22 53.01
Over noncloud forests locations 69.16 66.63 45.35 43.90 73.84 70.86 46.53 46.70
Over common land cover locations 71.68 68.28 43.44 42.35 77.32 72.62 43.74 35.65
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[25] Model LU had a mean simulation accuracy of
67.49%, i.e., 2.41% decrease in simulation accuracy from
model O. Over CF, the simulation accuracy ranged between
3.5% to 100% with a mean of 76.32% and a median of

81.75% (Table 3), i.e., 1.2% lower accuracy than model O.
Over NCF locations, the range was 0.1% to 100% with a
mean of 66.63% and median of 70.86% (Table 3), i.e., a
2.5% lower accuracy than model O.

Table 4. Same as Table 3 but for Threat Score

Mean Median

O LU ATM LUATM O LU ATM LUATM

Entire region 0.46 0.44 0.35 0.34 0.48 0.47 0.35 0.32
Over cloud forests locations 0.55 0.54 0.41 0.41 0.53 0.55 0.43 0.39
Over noncloud forests locations 0.45 0.43 0.35 0.33 0.47 0.46 0.35 0.31
Over common land cover locations 0.48 0.46 0.34 0.34 0.50 0.48 0.31 0.26

Figure 3. Difference in PCM accuracy of model simulated clouds. (a) Difference in PCM over cloud
forest regions as identified in the correct LU map. (b) Difference over noncloud forest regions. PCM for
the model run with accurate LU and accurate ATM information when subtracted from the PCM of model
run with default RAMS LU information but accurate ATM gave the differences as plotted.
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[26] The actual differences in simulation accuracy over
CF locations (Figure 3a) shows an absence of any consistent
positive differences that would have indicated that model O
had better performance due to accurate land cover informa-
tion. In fact there were 42 comparisons when model LU had
better performance, 14 times when both models had iden-
tical performance, and in 53 cases model O had better

simulations over CF. Over NCF locations (Figure 3b) there
appears to be more consistent differences (positive differ-
ences) between models O and LU which means that better
land cover representation improves the simulations over
NCF (mean difference was 2.5%).
[27] Similar to the PCM, the TS scores (Table 4) of model

LU had small decreases over all the comparison areas when
compared to model O. The results from these analyses show
that better land cover representation results in small gains in
model performance. Note that a simulation with different
soil moisture may have led to larger differences but we
wanted to simply quantify the effect of land cover repre-
sentation and not the combined effect of land cover repre-
sentation and soil moisture.
[28] In RAMS, each land cover type is represented by a

suite of biophysical variables: albedo, leaf area index (LAI),
fractional vegetation cover, etc. These biophysical variables
determine energy and moisture exchange between the land
surface and overlying atmosphere. Thus the effect of land
cover classification accuracy on simulated clouds is ulti-
mately controlled by the changes in the biophysical varia-
bles. Therefore the effect of classification accuracy relies on
how the surface scheme (LEAF-2 in this study) defines
these biophysical variables for each type. As the biophysical
parameters of different land cover types become more
differentiated, the effect observed will be more pronounced.
In the hypothetical case when all land cover has exactly the
same biophysical characteristics, classification accuracy will
not have any effect on the simulations differentiating the
effects of land cover specification accuracy.
[29] In Figure 4a, the default RAMS LAI is compared to

the satellite-observed LAI product [Myneni et al., 2002] for
March 2003. It is evident that the LAI in RAMS is
unrealistically uniform over most of the domain with
several regions poorly represented. Other biophysical
parameters in RAMS, such as vegetation roughness height
(Figure 4b), vegetation displacement height (Figure 4c), and
albedo, while not being homogeneous, are nevertheless
identical in regions where the land cover types are identical.
This is because we did not update the values for any of these
biophysical parameters and therefore only the patterns
appear different. Ge et al. [2007] have speculated that these
differences may impact simulation accuracy and thus the
impact of land cover on simulating clouds might be greater
than those described in this study. Unfortunately, there are
no global data sets for these parameters currently available
except albedo where methods to incorporate MODIS black
and white sky albedo [Schaaf et al., 2002; Moody et al.,
2005] into the land surface models is still under investiga-
tion [e.g., Matsui et al., 2007].
4.2.3. Accuracy of Model ATM
[30] Model ATM compares the importance of accurate

atmospheric profile information. The simulation was iden-
tical to model O in terms of land cover information but
utilized standard atmospheric information generally avail-
able to researchers, i.e., NCEP Reanalysis, upper air pro-
files, and surface information from NCAR.
[31] The mean simulation accuracy over the entire high-

resolution model domain decreased to 45.91% with a
median of 46.75% (Table 3). This was a decrease of 24%
from Model O and 21.58% from model LU. Over CF
locations, the decreases were 25.8% from model O and

Figure 4. (a) Comparison of LAI between simulations
with updated LU for Models O and ATM, and simulations
without spatially explicit LAI for Models LU and LUATM.
(b) Similar to Figure 4a but for vegetation roughness height
(meters). (c) Similar to Figure 4a but for vegetation
displacement height (meters). Note that over identical LU
(see Figure 1), the vegetation roughness and displacement
heights are identical, as we did not update these biophysical
parameters and allowed the default values associated with
land cover category to be used.
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24.6% from model LU. Over NCF the decreases were
23.81% and 21.35% respectively. Figure 5a shows the
actual differences in the PCM between model O and this
model for each comparison. It is quite clear from Figure 5a
that, in general, the extra atmospheric information of model
O led to substantially better simulations over the CF
locations. There were only 12 cases when model ATM
performed better than model O, while 98 times model O
performed better than model ATM. Similarly over NCF
locations model O performed better on 96 of the 110
comparisons. Default atmospheric information also de-
creased the TS scores by 0.1 (Table 4: TS comparisons of

models O and ATM). These results clearly show that in
frontier regions, better atmospheric information can lead to
substantial improvements in model simulations.
4.2.4. Accuracy of Model LUATM
[32] Model LUATM utilized the same land cover as in

model LU but atmospheric boundary and initial condition
information as in model ATM. It is clear from the results
presented in sections 4.2.2 and 4.2.3 that when simulations
are conducted with standard atmospheric information (but
updated land cover) there is a greater decrease in model
accuracy than simulations that are done with model default
land cover (but good atmospheric representation). Thus it

Figure 5. Difference in PCM accuracy of model simulated clouds. (a) Difference in PCM over cloud
forest regions as identified in the correct ATM map. (b) Difference over noncloud forest regions. PCM for
the model run with accurate LU and accurate ATM information when subtracted from the PCM of model
run with default accurate LU but standard ATM information gave the differences as plotted.
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was not surprising that model LUATM only had a 44.56%
(Table 3) simulation accuracy for clouds (i.e., 25.34%,
22.93%, and 1.35% worse simulation than models O, LU,
and ATM, respectively). While the results clearly show that
this model had the worst simulation accuracy, note the large
difference in simulation accuracy between this model and
models with extra atmospheric information, and the much
smaller difference between this model and the model with
standard atmospheric information but updated land cover,
(i.e., model ATM). The difference with models O and LU is
17 to 19 times larger than the difference with model ATM.
[33] Figure 6 shows the differences in model LUATM and

model ATM. Model LUATM has a mean performance
accuracy of 51.26% over cloud forests and 43.90% over
noncloud forest locations (Table 3) and corresponding

median values were 53.01% and 46.70%. Thus over CF
locations model LUATM had 0.5% reduced accuracy from
model ATM but a much larger reduction when compared to
models O and LU. Over NCF locations, model LUATM
had a 1.46% reduced accuracy compared to model ATM.
Figure 7 shows the difference in performance between
models O and LUATM, i.e., between the model with the
best land cover and atmospheric information and the model
with the default land cover and standard atmospheric infor-
mation. Table 4 displays the TS scores for model LUATM
which were in general the least among all the simulations.
[34] The last set of cloud cover comparisons performed

was over locations that had identical land cover (Figure 1)
across all the models. At these locations the models per-
formed as expected, with model O performing the best,

Figure 6. Impact of LU accuracy on simulations over (a) cloud forest regions and (b) noncloud forest
regions when only standard atmospheric information is provided.
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followed by model LU, model ATM, and model LUATM.
Interestingly, since the land cover is identical at these
locations, if the atmosphere information is identical, one
would expect nearly identical simulation accuracy but
results suggest otherwise. Atmospheric information
appeared to be the primary criterion for accurate simula-
tions. Land cover appeared to be the secondary criterion.
For example, model O and model LU both used updated
atmospheric information and differed only in land cover
(Figure 1). Simulation accuracy assessment in these loca-
tions of common land cover shows that model O performed
3.4% better than model LU. Since all other parameters are
identical, the only explanation is that incorrect land cover at

other locations led to the decreased simulation accuracy.
Similarly when both models had standard atmospheric
information (i.e., models ATM and LUATM), the model
with better land cover representation over the entire study
region (i.e., model ATM) had a 1.09% better simulation
accuracy than model LUATM over the common land cover
locations (Figure 1). However, when models O and LU (as a
group) are compared with models ATM and LUATM (again
as a group), the difference in accuracy is 24.85% to 29.33%
over locations where all four model have identical land
cover. Identical results are seen from the TS scores as well
(Table 4). This clearly shows the overwhelming importance
of accurate initial and lateral boundary atmospheric infor-

Figure 7. Impact of the combined effect of LU and ATM accuracy on PCM over (a) cloud forests and
(b) noncloud forest locations.
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mation compared to accurate land cover information for
accurate model simulations.

4.3. Differences in the Simulated Profiles of
Temperature and Dewpoint Temperature

[35] We also determined the average absolute difference
between the simulated and observed atmospheric tempera-
ture (equation (4)) and dewpoint temperature (equation (5))
profiles in four different atmospheric layers for the four
model simulations. These four layers are: (1) surface to
850 mb which is the normal height of the trade wind
inversion in Costa Rica; (2) 850 mb to 700 mb; (3) 700 mb
to 550 mb; and (4) above 500 mb. These divisions were done
simply to make it easier to analyze the data and to have a
simple progression of heights. For example, 700 mb is
around 3 km above ground level whereas 550 mb is around
5 km above sea level.

1

n

Xn
1

Tobserved � Tsimulated
		 		 ð4Þ

1

n

Xn
1

Tdobserved � Tdsimulated
		 		: ð5Þ

[36] The deviations were computed in the following
manner: starting with the first rawinsonde observed values
(i.e., lowest atmospheric levels), we did a quality check on
whether the observation had any fill value for pressure,
temperature, dewpoint temperature, latitude, longitude,
wind speed and wind direction. Next, using the information
of latitude and longitude, we identified which RAMS cell
this layer would fall into. The logic behind this is that while
at the lowest layer the rawinsonde would be profiling within
the same RAMS cell, as the rawinsonde would reach higher
atmospheric layers it would deviate more from the original
cell from where it was launched. In fact, our calculations
show that for the surface to 850 mb layer, 32.63% of the
observations collocated to cells other than those from where
they were launched. At higher levels, 100% of the rawin-
sonde information came from cells other than those from
which they were launched. Once the correct RAMS cell is
identified, we next collocated the rawinsonde and the cell’s
pressure to within 0.1 hPa. The temperature and dewpoint
temperature of the observations and simulations that collo-
cated in this manner were then used to determine the

average absolute temperature and dewpoint deviations.
Since we had 4 models, 4 atmospheric layers, and two
variables being compared, we had a total of 32 deviations
that were averaged and are shown in Table 5.
[37] There are distinct differences in the amount of

deviation in simulation of temperature and dewpoint tem-
perature between the four models and at the different
atmospheric levels. We also believe this partly accounts
for the difference in the accuracy of cloud simulations using
the four models. First, at each of the atmospheric layers, the
deviations for dewpoint temperatures were always higher
than for temperature. This simply means that whether we
provided the model with standard atmospheric profiles or
otherwise, and whether we provided the model with the
default land cover or otherwise, simulating the dewpoint
temperature correctly is more difficult than simulating the
temperature profiles. Second, we cross-compared the four
model performance for temperature and dewpoint tempera-
ture at these four atmospheric levels. At all the layers,
model O (our best-performing model from the cloud com-
parisons) had errors in correctly simulating the temperature
and dewpoint temperature. There is no consistent pattern in
the errors of simulating temperature with the largest devi-
ation present in the 850- to 700-hPa layer, and the least at
700- to 550-hPa layer. The dewpoint temperature deviations
systematically increased with decreasing pressure and the
errors in dewpoint temperature simulation were also larger
than the errors in temperature simulation. Similar results
were obtained for the other models.
[38] When the deviations are cross-compared across the

models and for each meteorological variable at each model
layer, the following was found. Model O had the least
temperature deviation at the surface to 850-hPa layer,
followed consecutively in increasing order models LU,
ATM, and LUATM. In the 850- to 700-hPa layer, there
was no trend but model LUATM had the maximum average
deviations from observations. In the 700- to 550-hPa layer,
models O and LU had lower deviations than models ATM
and LUATM. Above 550 hPa, models ATM and LUATM
had lower deviations than models O and LU. This shows
that only at lower atmospheric layers models ATM and
LUATM may have larger errors in simulating temperature.
Next we compared the dewpoint temperature deviations in a
similar manner. First, the deviations for all models system-
atically increased with elevation, but in general, at all
atmospheric levels, models O and LU had lower deviations
than models ATM and LUATM. The differences in the
deviations were around 0.15 K to 0.39 K at the surface to
850-hPa layer. This means models O and LU had 0.15 K to
0.39 K less errors in simulating dewpoint temperature. In
the 700- to 550-hPa layer these values ranged from 6.04 K
to 6.34 K which again means that models O and LU had
6.04 K to 6.34 K less error in simulating the dewpoint
temperature. These sets of comparisons also show that
atmospheric information is more important for model sim-
ulations than land cover information.

5. Discussion and Conclusion

[39] Frontier and developing areas are the hot spots of
LCC where several past studies [Charney, 1975; Xue, 1997;
Zheng and Eltahir, 1997; Pielke et al., 1999; Chase et al.,

Table 5. Average Deviation of Model Simulated Atmospheric

Profile From Observed Rawinsonde Values for Four Atmospheric

Layers for Two Parametersa

Temperature Dew Point Temperature

O LU ATM LUATM O LU ATM LUATM

Surface to 850 hPa 1.15 1.28 1.73 2.21 1.45 1.38 1.77 1.60
850 to 700 hPa 1.40 1.38 1.36 1.47 4.99 4.39 4.19 5.21
700 to 550 hPa 0.95 0.92 1.12 1.06 5.35 5.35 11.39 11.69
Above 550 hPa 0.98 0.97 0.78 0.80 8.33 8.34 11.82 11.43

aParameters are temperature and dewpoint temperature at pressure levels
that were matched to less than 0.1 hPa difference. The number of
comparisons performed for each atmospheric layer and for each model is
given within the temperature columns. A similar number of comparisons
was performed for dewpoint temperature.
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2000; Feddema et al., 2005; Pielke et al., 2007] have shown
local, regional, and global climate changes as a result of
LCC using numerical model simulations. Very few studies
have been performed to help understand the importance of
accurate land cover representation to simulate the current
regional climate [e.g., Ge et al., 2007]. Even less common
are studies comparing and contrasting the importance of
atmospheric and land cover information in frontier and
developing areas where most of the land cover transitions
occur but where both these data sets are difficult to obtain.
[40] This study shows that in the dry season in the area

surrounding the Cordillera de Tilarán in northern Costa Rica
while accurate land cover information is important for
simulating current conditions, atmospheric information is
an order of magnitude more important. We ran, validated,
and intercompared four model simulated precipitation,
clouds and atmospheric profiles against independent obser-
vations. We selected clouds as the intercomparison metric
for the four models because cloud cover simultaneously
incorporates the nonlinear effects of LU and atmospheric
structure and provides a point-to-point comparison that
precipitation comparisons cannot provide as they are mea-
sured only in some select locations.
[41] Our results show that model O (which had updated

land cover and extra atmospheric information), simulated
precipitation and clouds best. Model LU had the next best
simulation of precipitation and cloud cover, followed by
model ATM and then model LUATM. Between models O
and LU (as a group) and models ATM and LUATM (as a
group) the difference in cloud simulation accuracy averages
between 21% and 25%. Note that models O and LU had
good atmospheric information whereas models ATM and
LUATM had standard atmospheric information. Within the
models O and LU (where the difference was only the land
cover) the simulation accuracy of clouds differed by 1% to
3% whereas between models ATM and LUATM (where
again the only difference was land cover), this value was
between 1% and 2%. This result shows that detailed
atmospheric information is more crucial in increasing sim-
ulation accuracy than land cover information. Similar
results were obtained from the TS analyses.
[42] We found that similar to the cloud simulation accu-

racy the deviations tend to fall into two groups with models
O and LU having lower deviations and models ATM and
LUATM having larger deviations. The deviations were
larger for dewpoint temperature than for temperature and
it appears that dewpoint temperature deviations systemati-
cally increased with decreasing pressure (i.e., increasing
altitude) for all 4 models. However, at lower pressures
(higher altitudes) the model pairs O and LU and model
pairs ATM and LUATM diverged in terms of their devia-
tions. The latter model pair had 3 K to 6 K larger deviations
compared to the former model pair. At lower elevations the
latter model pair had a few tenths of Kelvin larger devia-
tions. This also shows that models with better atmospheric
information performed better.
[43] Our results thus show that in this frontier region,

accurate and detailed atmospheric information is more
critical than accurate and detailed land cover information
for conducting accurate atmospheric simulations. There
were small gains in simulation accuracy from updating land
cover information compared to the larger gains from better

atmospheric representation. However, even with updated
land cover and extra atmospheric information, our simula-
tions only had an overall accuracy of 70% and significant
deviations from observed temperature and dewpoint temper-
atures. This shows that there are at least 4 opportunities for
further model improvement. (1) A more substantial and
close-knit network of radiosondes to provide information to
the model; (2) further improvement in the land cover
representation such as better land cover classification,
observed albedo and roughness information; (3) improved
model microphysics of land atmosphere interactions, cloud
formation, and soil-vegetation-atmospheric transfer; and
(4) a minor impact could simply be from the model con-
figuration such as horizontal grid spacing and multiple
nested grids.
[44] There are several aspects of this work that can be

explored further. For example, an entire range of sensitivity
analyses could be performed to evaluate the effects of
accuracy in the land cover representation. Similarly, the
impact of increasing or decreasing the number of rawin-
sondes to the model to determine the critical number of
rawinsondes required to conduct simulations without com-
promising the accuracy. Systematic biases in the simulation
as contrasted with the rawinsonde data, such as for the
upper-level dewpoint temperature, can also be used to
nudge the models toward the actual values. Also note that
this since this study consists only of short time model
integrations which are constrained by lateral boundary
conditions, ensemble forecasting would not add to our
assessment of the relative role of LU and atmospheric
information on this time scale.
[45] From this study, however, it is quite clear that

changes in land cover and atmospheric information will
result in changes in simulation accuracy. The critical result
that we have shown in this paper is that providing a state-of-
the-art regional model with extra rawinsonde information
improved the model accuracy by over an order of magni-
tude using the validation metrics analyzed in this paper. The
same benefits for simulations conducted using the WRF or
some other numerical model should also occur at other
frontier regions.
[46] With respect to assessing the relative role of land-use

change on the climate system, the improved simulation
accuracy with better atmospheric structure information has
an important implication. Since atmospheric information, of
course, is not available for different landscape scenarios,
(i.e., simulations are one-way nested regional model inte-
grations in which there is no interaction from the regional to
the large scales through the lateral boundaries) assessments
of the relative role of LULC change will still have to rely on
either using the standard atmospheric data set or on the use
of more detailed atmospheric data over the current land-
scape even though it is affected by the current landscape for
initial and lateral boundary conditions. The latter approach
will reduce the simulation differences expected in such
landscape sensitivity studies since the initial atmospheric
conditions with a different landscape would in reality, of
course, be different. This conclusion is independent of
whatever larger-scale reanalysis product is used, even if
the field data were assimilated into it, as well is independent
of the particular climate metrics (e.g., orographic clouds)
that are evaluated in this study.
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