Monthly Archives: February 2012

Biological Aerosol Particles Are A Larger Climate Forcing Than Considered By The IPCC – A New Paper “Primary Biological Aerosol Particles In The Atmosphere: A Review” By Després Et al 2012

I was alerted to this new paper by M. Andreae. It presents evidence of yet another climate forcing which has not been adequately examined in the IPCC reports. It makes understanding climate processes even more difficult. The new paper is

Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M. O., Pöschl, U., and Jaenicke, R., Primary biological aerosol particles in the atmosphere: a review: Tellus, 64, 1-58, 2012.

The abstract reads [highlight added]

Atmospheric aerosol particles of biological origin are a very diverse group of biological materials and structures, including microorganisms, dispersal units, fragments and excretions of biological organisms. In recent years, the impact of biological aerosol particles on atmospheric processes has been studied with increasing intensity, and a wealth of new information and insights has been gained. This review outlines the current knowledge on major categories of primary biological aerosol particles (PBAP): bacteria and archaea, fungal spores and fragments, pollen, viruses, algae and cyanobacteria, biological crusts and lichens and others like plant or animal fragments and detritus. We give an overview of sampling methods and physical, chemical and biological techniques for PBAP analysis (cultivation, microscopy, DNA/RNA analysis, chemical tracers, optical and mass spectrometry, etc.). Moreover, we address and summarise the current understanding and open questions concerning the influence of PBAP on the atmosphere and climate, i.e. their optical properties and their ability to act as ice nuclei (IN) or cloud condensation nuclei (CCN). We suggest that the following research activities should be pursued in future studies of atmospheric biological aerosol particles: (1) develop efficient and reliable analytical techniques for the identification and quantification of PBAP; (2) apply advanced and standardised techniques to determine the abundance and diversity of PBAP and their seasonal variation at regional and global scales (atmospheric biogeography); (3) determine the emission rates, optical properties, IN and CCN activity of PBAP in field measurements and laboratory experiments; (4) use field and laboratory data to constrain numerical models of atmospheric transport, transformation and climate effects of PBAP.”

Key extracts from this paper include

“[the] global average number concentrations of biological particles have often been assumed to be insignificant compared to non-biological material and have thus not typically been considered for widespread measurements or included in global climate models. The Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC) in 2001, for example, listed the global source strength of primary biological aerosol particles to be only 56 Tg/yr, in contrast to 3340 Tg/yr for sea salt and 2150 Tg/yr for mineral dust listed in the same report (Penner et al., 2001). Furthermore, the Fourth Assessment Report of the IPCC in 2007 stated that these estimates had not been refined, and primary biological particles were not mentioned in the contribution of Working Group I (Physical Science Basis) to the overall report (IPCC 2007b). PBAP concentrations have been estimated by other researchers (e.g. Matthias- Maser and Jaenicke, 1995) as comprising a much higher percentage of total atmospheric aerosol volume, however, and so important discrepancies exist.”

Recently, several investigations have suggested that biological particles can have a substantial influence on clouds and precipitation and thus may influence the hydrological cycle and climate at least on regional scales (e.g. Andreae and Rosenfeld, 2008; Prenni et al., 2009; Poschl et al., 2010).”

“The absorption and scattering of radiation by aerosol particles are important physical properties that influence regional and global radiation budgets. Better understanding of the effect that natural aerosols have on the atmosphere is necessary to constrain effects that anthropogenic influence may have on global climate. Because PBAP can be a major fraction of aerosol number and surface area in certain locations, it is possible that they may also affect climate forcing both directly (by absorbing or scattering radiation) and indirectly (through cloud processes). Certain fungal spores and other PBAP classes can be highly coloured and absorbing, which may increase their direct influence on the surrounding atmosphere (e.g. Adams et al., 1968; Troutt and Levetin, 2001). However, there have been very few studies estimating the direct effect of PBAP on climate, in part because geographically or temporally comprehensive PBAP measurements are not yet available. A theoretical description of the interaction between electromagnetic radiation and PBAP is difficult because the Mie theory is only valid for spheres, and thus many biological aerosol particles cannot be well described (Bohren and Huffman, 1983).”

One of the main influences of PBAP on climate and atmosphere is through the capability of certain PBAP to function as excellent ice nuclei. Future research should thus concentrate on the determination of actual emission rates and optical properties of PBAP and to link results from laboratory experiments concerning the IN ability of PBAP to atmospheric measurements.”

source of image 

Comments Off on Biological Aerosol Particles Are A Larger Climate Forcing Than Considered By The IPCC – A New Paper “Primary Biological Aerosol Particles In The Atmosphere: A Review” By Després Et al 2012

Filed under Climate Change Forcings & Feedbacks

An Example Of The Reasons That Skillful Multi-Decadal Predictions Of Climate Change Has Not Been Achieved – “Long Tails In Regional Surface Temperature Probability Distributions With Implications For Extremes Under Global Warming” By Ruff and Neelin 2012

The recognition that the models need to skillfully predict changes in the statistics of climate variables (and they have not in hindcasts), if properly recognized by the IPCC impacts assessment group, would have major implications. So far they have mostly ignored this issue when seeking to convince people as to why the multi-decadal regional and global modal predictions should be considered robust.

Jos de Laat has alerted us to a new paper which addresses part of this issue. While the article contains the usual acceptance of the multi-decadal model predictions as robust, their paper actually illustrates why the models have so far not passed this test. The models have not passed this test. The paper is

Ruff, T. W., and J. D. Neelin (2012), Long tails in regional surface temperature probability distributions with implications for extremes under global warming, Geophys. Res. Lett., 39, L04704, doi:10.1029/2011GL050610.

The abstract reads [highlight added]

“Prior work has shown that probability distributions of column water vapor and several passive tropospheric chemical tracers exhibit longer-than-Gaussian (approximately exponential) tails. The tracer-advection prototypes explaining the formation of these long-tailed distributions motivate
exploration of observed surface temperature distributions for non-Gaussian tails. Stations with long records in various climate regimes in the National Climatic Data Center Global Surface Summary of Day observations are used to examine tail characteristics for daily average, maximum and minimum surface temperature probability distributions. Each is examined for departures from a Gaussian fit to the core (here approximated as the portion of the distribution exceeding 30% of the maximum). While the core conforms to Gaussian for most distributions, roughly half the cases exhibit non-Gaussian tails in both winter and summer seasons. Most of these are asymmetric, with a long, roughly exponential, tail on only one side. The shape of the tail has substantial implications for potential changes in extreme event occurrences under global warming. Here the change in the probability of exceeding a given threshold temperature is quantified in the simplest case of a shift in the present-day observed distribution. Surface temperature distributions with long tails have a much smaller change in threshold exceedances (smaller increases for high-side and smaller decreases for low-side exceedances relative to exceedances in current climate) under a given warming than do near-Gaussian distributions. This implies that models used to estimate changes in extreme event occurrences due to global warming should be verified regionally for accuracy of simulations of probability distribution tails.”

The conclusion of the paper has the text

“The sensitive dependence of tail characteristics on regional effects noted here suggests that it will be (i) useful to understand the physical mechanisms that produce them (including the observed asymmetry, and the sources of regional dependence); and (ii) essential to verify whether high-resolution models accurately reproduce observed tail characteristics for any region for which an assessment of extreme events is being conducted. A model that has an error in the nature of the tail, e.g., erroneously produces a Gaussian rather than a long tail under current climate for a particular region, will likely have serious errors in quantitatively predicting the increase in exceedances under future climate.”

As we wrote in our article

Pielke Sr., R.A., and R.L. Wilby, 2012: Regional climate downscaling – what’s the point? Eos Forum,  93, No. 5, 52-53, doi:10.1029/2012EO050008.

“….for regional downscaling (and global) models to add value (beyond what is available to the impacts community via the historical, recent paleorecord and a worst case sequence of days), they must be able to skillfully predict changes in regional weather statistics in response to human climate forcings. This is a greater challenge than even skillfully simulating current weather statistics.”

The new Ruff and Neelin 2012 provide support for this conclusion.

source of image

Comments Off on An Example Of The Reasons That Skillful Multi-Decadal Predictions Of Climate Change Has Not Been Achieved – “Long Tails In Regional Surface Temperature Probability Distributions With Implications For Extremes Under Global Warming” By Ruff and Neelin 2012

Filed under Uncategorized

Bob Tisdale’s Book “If the IPCC was Selling Global Warming as a Product, Would the FTC Stop Their Deceptive Ads?”

Bob Tisdale has published a book based on his insightful weblog posts, titled and available from

If the IPCC was Selling Global Warming as a Product, Would the FTC Stop Their Deceptive Ads?

His book is discussed at Watts Up With That and on Bob’s weblog.

I have a copy of his book and recommend it. Even if you do not agree with some (or even all) of his findings, he has provided information as to how to access the original data in order to do your own analysis in Chapter 9 titled

Basic Instructions for Downloading Climate Data and Creating Graphs

We need more such competent scientific presentations where the authors present details as to how to access the raw data, in this case by using the KNMI Climate Explorer, as well as to complete analyses using that data such as Bob has done. I also encourage Bob to pursue submitting his work to peer-reviewed journals.

source of image

Comments Off on Bob Tisdale’s Book “If the IPCC was Selling Global Warming as a Product, Would the FTC Stop Their Deceptive Ads?”

Filed under Books

Guest Post By Madhav Khandekar – “Record Grain Yield Estimated By Indian PM For 2011/12”

Madhav Khandekar requested posting the following information on Indian agriculture

Record Grain Yield estimated by Indian PM for 2011/12 by Madhav Khandekar

India’s PM Mr Manmohan Singh announced in New Delhi on February 20th that India expects a record grain yield of about 250 Million tonnes for the agricultural year 2011/12. The PM was addressing the Golden Jubilee celebrations of the ICAR-Indian Centre for Agricultural Research, a Government funded research center which has provided innovative techniques in recent years in helping boost agricultural products across the breadth and depth of India.  As the news item further states ‘ Indian agriculturists have also boosted production of fruits, vegetables, milk and cotton  in this year. The production of pulses (beans and related proteins) has also gone up by 18 Million tonnes”

It may be noted that India is primarily a “vegetarian country” with a large majority of people eating mostly vegetarian food, with inclusion of occasional meat products like chicken, lamb/goat or beef. Coastal regions like the State of Kerala in southwest and Bengal in east are “fish-eaters’, mostly ‘fresh-water’ fish in Bengal and salt-water ( sea) fish in Kerala.

The record grain yield may be attributed to well-distributed Monsoon (June-September) rains, two years in a row 2010 and 2011. It may be recalled that the 2009 Monsoon season was a severe drought, primarily due to the El Niño in the equatorial Pacific. The drought was also exacerbated due to other factors like heavier Eurasian winter snow cover and unfavourable positioning of the IOD-Indian Ocean Dipole in the equatorial Indian Ocean (Francis & Gadgil, Current Science, 2009). In contrast, the ongoing La Niña since early 2010 and a favorable positioning of IOD for 2011 has led to well-distributed rains in the last two monsoon seasons. Also increased winter rains in the northwest ( more frequent WD-Western Disturbances, mid-latitude low pressure systems percolating through Himalayan Passes in the west) region of Punjab has helped improved winter wheat yields in recent years.

In summary, well-distributed rains due to prevailing La Niña and favorable IOD has helped produce record grain, fruit and vegetable yield for India for 2011/12. The IPCC science has not adequately analyzed impact of well-distributed (summer and winter) rains on grain fruit and vegetable yield, especially in the monsoonal climate of south Asia.

source of image

Comments Off on Guest Post By Madhav Khandekar – “Record Grain Yield Estimated By Indian PM For 2011/12”

Filed under Guest Weblogs, Vulnerability Paradigm

E-Mail Interaction With Chris Colose Of The University Of Albany (SUNY)

Chris Colose of the University of Wisconsin  [Chris e-mailed this afternoon 2/24/2012] and said he is currently at the University of Albany (SUNY)]. Chris had  alerted me to a post that he presented on Skeptical Science titled

Tropical Thermostats and Global Warming

He invited me to participate there, but I declined based on my previous negative experience with the lack of open constructive debate at Skeptical Science. With Chris’s permission, I am posting below our exchange of e-mails and at the end he has answered a set of questions I posed to him. I appreciate his agreement to constructively interact even though we have quite substantive disagreements in views.

On Thu, 16 Feb 2012, Colose, Chris wrote:

Roger Pielke,

In response to the WUWT article (and your embracement of it) on the tropical thermostat see,

In case you would like to contribute to the discussion…


I replied

 Hi Chris

Thank you for alerting me to their post. My experience with Skeptical Science (as I have documented extensively on my weblog) is they are not really interested in a constructive debate. I have given up trying with them.

I presented several papers that show evidence of self-regulation (each in the peer reviewed literature), and that is where the debate really needs to take place.

P.S. Skeptical Science never even responded to my request for their answers to these two questions:

1. Is global warming (and cooling) a subset of climate change or does    it dominate climate change?

2.  What evidence exists that the multi-decadal global climate models    can skillfully predict i) the real-world observed behaviour of    large-scale atmospheric-ocean circulation features such as ENSO, the    NAO, the PDO, ect. and ii) CHANGES in the statistics (patterning and    in time) of these circulation features?

I posted on this in

The questions would challenge them too much, I assume, so they have ignored them.


On Thu, 16 Feb 2012, Colose, Chris wrote:


Please keep in mind that SkS is run by multiple authors, each of which have their own specific interests and topics of choice that they post on.  Personally I am not very active on the site, but I don’t have my own blog running anymore so it’s a good place for me to post an article if I feel inclined to do so.

The posts are largely voluntary, in which people submit what they feel are worthwhile articles for internal review and after suggestions/edits, it would get published. If someone seen your challenge, then they may have felt compelled to write on it (I’ve not seen any indication that they were aware of your post, but again, I’m inactive there for large intervals of time and don’t check the “authors only” forums frequently)…one of the moderators would be a better contact for this.  I personally am not really interested enough in inter-blog “challenges” of this sort.

All I intended to convey to you was my post on the Willis Eschenbach tropical thermostat, and your follow-up to it. And I would respond to comments in the form of discussion/debate on that article independently of how other authors would.


I responded with

Hi Chris

I was in direct contact with one of their contributors – Rob Honeycutt where we exchanged a number of e-mails. He said they would respond to my questions (this was months ago) and they never did. I had an extensive interchange with commenters and presenters on the weblog last year (these exchanges are summarized in detail on my website).

My conclusion of their weblog is that it is a place for the “convinced” to vent their views and, for some, disparage those who do not (e.g. see their small links on the upper left of their weblog home page – Christy Crocks. ect). To my knowledge, most people do not pay any attention to their weblog because of their tone and arrogance in some of their posts, and certainly in their comments.  Rob was cordial and we constructively interacted in our e-mail exchanges but this approach is not a general case for a number of others on that weblog.

Because of your interest (and your alerting me to your post), however, I will post on the self-regulation issue later next week on my weblog. It is actually quite easy to show this self-regulation exists, at least to some extent, if one accepts the IPCC radiative forcings as being reasonably accurate.

As a side issue, you might be interested in these several new papers of ours

Pielke Sr., R.A., R. Wilby, D. Niyogi, F. Hossain, K. Dairuku, J. Adegoke, G. Kallos, T. Seastedt, and K. Suding, 2012: Dealing with complexity and extreme events using a bottom-up, resource-based vulnerability perspective. AGU Monograph on Complexity and Extreme Events in Geosciences, in press.

Pielke Sr., R.A., and R.L. Wilby, 2012: Regional climate downscaling . what’s the point? Eos Forum. Jan 31 2012 issue

Pielke Sr., R.A., A. Pitman, D. Niyogi, R. Mahmood, C. McAlpine, F. Hossain, K. Goldewijk, U. Nair, R. Betts, S. Fall, M. Reichstein, P. Kabat, and N. de Noblet-Ducoudré, 2011: Land use/land cover changes and climate: Modeling analysis and observational evidence. WIREs Clim Change 2011, 2:828.850. doi: 10.1002/wcc.144.

I would also welcome your answers to the two questions posed in my earlier e-mail, which I would be glad to post on my weblog (and you can repost elsewhere as you see appropriate).

Best Regards


Then Chris resplied and I have posted it and my comments together (which I sent back to him) in the following (with very minor edits for formating). I have presented my comments with italics to better distinguish them from Chris’s comments.

Hi Chris

As promised, please see my replies below. Do I have your permission to post our e-mail exchanges?

Best Regards


Chris’s reply 

On Thu, 16 Feb 2012, Colose, Chris wrote:


I appreciate your concern, and if I could run SkS it would probably be in a different fashion than they do now, but for the most part I think they try to be consistent with the general scientific literature (and I certainly try to do so in my posts, and to mention various viewpoints when it be relevant).


My Comment: The issue of “relevancy” is quite subjective and SkS clearly has an advocacy perspective.

Chris continues:

You’ll see that I mentioned many older articles relating to the tropical thermostat hypothesis, but the fact is that this is now an outdated concept in the literature, and the analysis of Eschenbach is certainly not “new” as you implied in your title. Even if some negative feedbacks exist to dampen climate sensitivity beneath the IPCC range, the ideas in the WUWT article (and going back to Ramanathan and Collins) would, if taken literally, mean temperatures in the tropics could not change much at all.  This has been shown by a number of papers to have no basis in physics.  The Sun and Zhang study sheds no light on this, and in fact their results may not even be highly applicable to future global warming (and actually there’s been a few CMIP5 models that do quite well with this problem).

My CommentPlease send the papers that refute the findings of Sun. Their results also directly relate to the multi-decadal climate prediction issue, as one has his results are on climate processes, which are an integral component of the longer term climate variability. You also did not even discuss the self regulation of the coldest arctic tropospheric temperatures that we discuss in the papers I alerted you to.

On showing that the radiative imbalance involves a negative feedback (which means there is a self regulation of this aspect of the climate system), if one accepts the net radiative forcing given in the Statement of Policymakers of the 2007 IPCC report, the actual observed radiative imbalance is significantly less.

I have discussed this issue often on my weblog; e.g. see

Climate Metric Reality Check #1 . The Sum Of Climate Forcings and Feedbacks Is Less Than The 2007 IPCC Best Estimate Of Human Climate Forcing Of Global Warming

Why We Need Estimates Of The Current Global Average Radiative Forcing

Chris continues:

Hurley and Galewsky 2010 showed that the ENSO humidity change tend to relate more to where air is dehydrated, owing to the dynamics, rather than changes in the temperature field (see also the Dessler and Wong paper on ENSO vs Global warming water vapor feedback simualtions)- you cannot make up your conclusion about what you think their results show for for future radiative-changes just because they have no data for it!.

My Comment: I am unclear what you are using these papers to show in terms of our discussion. Clearly, the Sun work is on a climate process, and he shows that the models are inaccurate in terms of how it is represented in the models. The real world, using ENSO events, has a limit on how warm the ocean SSTs become when cloud-precipitation-ocean feedbacks are included. It should come as no surprise that the IPCC type models do so badly; e.g. see

Stephens, G. L., T. L.Ecuyer, R. Forbes, A. Gettlemen, J..C. Golaz, A. Bodas.Salcedo, K. Suzuki, P. Gabriel, and J. Haynes (2010), Dreary state of precipitation in global models, J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.,2010,stephens

Chris continues:

You do not allow comments on your blog, and the subject in the WUWT article is pretty exhausted in the literature, so I seen no other appropriate venue for discussion than to invite you to SkS.  But evidently you tend to be just as biased as others in the papers you present and your interpretation of them, so there’s really no point in arguing how we like various blogs.

My Comment:  I did try to debate on SkS and found that the tone was inappropriate for such exchanges (and posted on this; e.g. see

Response To Skeptical Science On A Series Of Weblog Posts

Two Questions To Skeptical Science Regarding i) The Relation of Global Warming To Climate Change and ii) The Predictive Skill Of Multi-Decadal Global Climate Models

The subject of the limit on the tropical SSTs is hardly a closed debate as illustrated by the Sun work as well as that of Stephens.

I also permit the presentation of alternative viewpoints on my weblog, and you certainly are invited to do that. I would then invite other climate scientists to respond is guest weblog posts.

Chris continues:

As far as your ‘challenge,’ I have let the rest of the SkS team know about it, so I will leave it to them to sort out who (if any) would like to do a post on it.  It’s really not of high interest to me.  Your first question has the obvious answer that global temperature is not the only thing important for the more broadly encompassing “climate change,” but I think it is a much more useful diagnostic than you do in that other variables (such as water vapor content, decrease in cold days, etc) follow suit with temperature anomalies, and most regions of the globe follow suit with the global-scale radiative forcing (with the usual caveat that there are heterogenities in how that response is distributed in space).

My Comment:  You avoided properly answering the first question. To rephrase, how do you define “climate forcings” and what are the first order human climate forcings that matter to society and the environment?

To provide a framework for you to respond, please let me know where you disagree with the fundings in our article

Pielke Sr., R., K. Beven, G. Brasseur, J. Calvert, M. Chahine, R. Dickerson, D. Entekhabi, E. Foufoula-Georgiou, H. Gupta, V. Gupta, W. Krajewski, E. Philip Krider, W. K.M. Lau, J. McDonnell,  W. Rossow,  J. Schaake, J. Smith, S. Sorooshian,  and E. Wood, 2009: Climate change: The need to consider human forcings besides greenhouse gases. Eos, Vol. 90, No. 45, 10 November 2009, 413. Copyright (2009) American Geophysical Union.

Chris continues:

I appreciate that you have a number of minority views on the relative importance of forcings, or the useful diagnostics we should pursue to gauge the response, but you have not convinced me that they are correct (or at least not being looked at by a number of other groups).

My Comment:  Please show me where the IPCC discusses these other forcings in their 2007 Statement for Policymakers.

Chris continues:

On the second question, I do not have expertise concerning how models have evolved over time and how up-to-date CMIP5 generation models represent, quantitatively, the degree of internal variability observed in the climate system, or how that skill varies across the models.  My impression is that the question itself is rather broad; I appreciate most blogs talk about “models” as if the whole discipline were one giant monolith, and they could all be categorized as “useful” or “not useful” independent of the timescale, variable, and statistic of interest,. However, the fact is it would take a report to delve into the question you pose with any justice.  Similarly, it would take a while to convincingly caveat the relevance of this to, say, attribution or climate sensitivity issues that I suspect most non-specialists are interested in.  For instance, it is well recognized that ENSO projections on multi-decadal timescales in a higher CO2 world are all over the place, which is problematic, but unclear to me how that would relate to the subject of attribution or sensitivity.

My Comment:  The second question I asked

2.  What evidence exists that the multi-decadal global climate models can skillfully predict i) the real-world observed behaviour of    large-scale atmospheric-ocean circulation features such as ENSO, the    NAO, the PDO, ect. and ii) CHANGES in the statistics (patterning and    in time) of these circulation features?

is fundamental to almost everything the IPCC models must do if they want to provide forecasts to the impacts community that have skill. I am surprised that you have not delved into this issue. If I am correct, the money being spent on the multi-decadal IPCC-type forecasts for the impact community is not only a waste, but is misleading policymakers. If you are just blindly accepting their impact (regional/local) results as robust, than I see a major source of our disagreement.

I welcome articles from you that show the IPCC models have skill on the multi-decadal time periods. Until you (or others) do, all the IPCC-type models can tell us is that the climate system is sensitive to the addition of CO2, other greenhouse gases, aerosols and land use/land cover change. We do not need a multi-hundred million dollar modeling program to provide regional and local impact scenarios when the models have shown no skill at doing this on multi-decadal time scales (even when run in a hindcast mode).

I look forward to your responses.

Chris Replied

Roger (you may post this correspondence if you wish),

1) Whether there is or is not work refuting Sun is irrelevant.  My point is that you have over-reached and have overextended the conclusions of the Sun study, well beyond what is justified.  The conclusions in the blog post by Eschenbach (and earlier studies by Ramanthan and Collins for example) make a specific claim of a maximum SST independent of solar or greenhouse forcing.  The feedbacks to ENSO have no clear relation to this whatsoever. Third party readers can judge this for themselves.

My Comment:  Sun’s research is not claiming that SSTs are independent of solar or greenhouse forcing. What he does show is that when the SSTs warm or cool, there is a negative feedback due to clouds and precipitation which results in a movement back to the original SSTs.  This is a self regulation mechanism, and would be applicable to any change in the tropical ocean SSTs, at least in the Pacific.

2) I do not believe you understand the difference between a ‘radiative forcing’ and the modeled ‘radiative imbalance’ of Hansen.  These numbers are not directly comparable .

My Comment:  The radiative imbalance = the radiative forcing + the radiative feedback.  If the radiative imbalance is less than the radiative forcing, the radiative feedbacks must be negative.

3) I fully agree that models need improvement on regional-scale hydrologic variables.  Your pointing this out is just moving the goal posts to the other side of the field; please remember I e-mailed you about my response to the original Eschenbach blog post.

My Comment:  You failed to adequately answer the question. The multi-decadal climate model predictions fail to skillfully predict changes in regional climate statistics in hindcasts.  This is a necessary condition for them to have any credibility to skillfully predict regional impacts in coming decades due to the combined effect of natural and human climate forcings and feedbacks.  The goalposts have not been moved. The regional climate predictions have not even made the cut to properly play the game.

4) My version of a “climate forcing” is the same as the “radiative forcing” definition widely used in the literature, though I recognize (as does IPCC) that non-radiative influences exist with respect to land cover changes (i.e., changes in evapo-transpiration or roughness, which are typically of opposite sign as the albedo response, and have very small impact on global mean temperature, but large regional changes).  I would consider the “first order” climate forcings over the 20th century to be LLGHG’s (primarily CO2 and methane) as well as aerosols, in the sense that the time-evolution of global mean temperature in the last 50 years or so can be roughly accounted for by the evolution of these two components.  Regionally, this may not be true.

My Comment:  Your narrow view of climate forcing is untenable as we show in our article

Pielke Sr., R., K.  Beven, G. Brasseur, J. Calvert, M. Chahine, R. Dickerson, D.  Entekhabi, E. Foufoula-Georgiou, H. Gupta, V. Gupta, W. Krajewski, E.  Philip Krider, W. K.M. Lau, J. McDonnell,  W. Rossow,  J. Schaake, J.  Smith, S. Sorooshian,  and E. Wood, 2009: Climate change: The need to consider human forcings besides greenhouse gases.   Eos, Vol. 90, No. 45, 10 November 2009, 413. Copyright (2009) American   Geophysical Union.

As we show in that article, the focus on just CO2 and methane as the causes of climate change is a rejected hypothesis.  Indeed, if it was this simple, it would make the prediction of changes in the frequency of such societally important events such as droughts, floods and tropical cyclones much easier.

5) Once again, I defer you to a modeling expert on the precise details of how models capture various variables and statistics, over what timeframes they do better or worse, and how that usefulness varies across models.  I have only delved into this in a shallow manner, but your questions to me are rather broad, nor do I get a sense that the modeling community has sold their results as more certain than is warranted.

My Comment:   I urge you to explore this issue. If you are going to state that “the time-evolution of global mean temperature in the last 50 years or so can be roughly accounted for by the evolution of these two components”, you should  i) provide an explanation for the muted increase in global average temperatures over the past decade or so, and ii) how does this translate to the ability to skillfully predict changes in the frequency of extreme events?

Finally, thank you for constructively interacting on these issues. I hope you can challenge your thinking on this subject.

source of image

Comments Off on E-Mail Interaction With Chris Colose Of The University Of Albany (SUNY)

Filed under Guest Weblogs, Q & A on Climate Science

A Proposal “Comparison Of GHCN Temperature Anomalies And Trends With Long Term Fluxnet Temperature Anomalies And Trends”

We [Markus Reichstein and I] have been unsucessful in obtaining funding for the proposal below, so I have posted to encourage others to pursue it. It builds on the issue of station siting quality that we discuss in our paper

Fall, S., A. Watts, J. Nielsen-Gammon, E. Jones, D. Niyogi, J. Christy, and R.A. Pielke Sr., 2011: Analysis of the impacts of station exposure on the U.S. Historical Climatology Network temperatures and temperature trends. J. Geophys. Res.,  116, D14120, doi:10.1029/2010JD015146.Copyright (2011) American Geophysical Union.

A Proposal 

The comparison of GHCN temperature anomalies and trends with long term Fluxnet temperature anomalies and trends

The Global Historical Climate Reference Network [GHCN] is the foundation for the land portion of the annual average multi-decadal global surface temperature trends [; Peterson et al 1998; Karl et al, 2006]. This temperature data is assumed to be robust with respect to assessing anomalies and long term trends, as reported, for example, by Parker (2004).

However, there have been questions raised with respect to the existence of systematic biases in the data due to the local landscape around the observing sies, as well as a need to attribute what fraction of the anomalies and long term trends are due to added CO2 and other greenhouse gases, aerosols and landscape change [e.g. Mahmood et al 2010].

This need to further examine the quantitative robustness of this land surface temperature data was highlighted at the 2010 Exeter meeting –  Surface temperature datasets for the 21st Century . For example, Matt Menne, Claude Williams and Jay Lawrimore reported that

“[GHCN Monthly]Version 2 [was] released in 1997….but without station histories for stations outside the USA)”


“Undocumented changes [in the USHCN] can be as prevalent as documented changes even when extensive (digitized) metadata are available”.

There is also a growing divergence between multi-decadal lower tropospheric temperature trends and surface temperature trends [Klotzbach et al, 2009, 2010), a  need to simultaneously assess long term temperature and humidity trends (i.e. moist enthalpy; e.g. see Fall et al, 2010), and of the determination of specific landscape in which the temperature measurements are made and how this effects the absolute humidity and dry bulb temperature (e.g. see Fall et al 2009).

This debate is overviewed in Pielke et al (2007,2009) and Parker et al (2009). At FLUXNET sites a recent related study has shown the contrasting behavior of forest and grassland sites in terms of radiative, sensible and latent energy fluxes during heatwaves (Teuling et al. 2010). This study also showed the potential of remote sensing (e.g. land surface temperatures) in this context.

The fundamental questions include:

  • What is the role of the local landscape in the immediate vicinity of the GHCN sites on long term temperature trends? Fall et al (2010) has found that poorly sited locations in the USA (i.e. those that are not representative of the larger scale region) have biases in averaged maximum and minimum temperatures and in diurnal range.
  • What is the importance of anomalies and multi-decadal trends in absolute humidity on the anomalies and multi-decadal trends in the dry bulb temperature?  Pielke et al 2004 discussed how the same trends in heat (moist enthalpy) can be accommodated by a variety of different trends in humidity and temperature.  Land use-land cover change clearly can influence both.
  • What is the role of landscape type on temperature (and moist enthalpy) on anomalies and long term trends? Diffenbaugh et al 2009, for example, found statistically significant cooling in areas of the Great Plains where crop/mixed farming has replaced short grass, areas of the Midwest and southern Texas where crop/mixed farming has replaced interrupted forest, and areas of the western United States containing irrigated crops.

The long term measurements at the Fluxnet sites provide an opportunity to assess the quantitative the spatial representiveness of anomalies and long term trends in sites within the GHCN network that are close to Fluxnet sites. At the FLUXNET sites air temperature and humidity are measured together with energy and carbon fluxes in the boundary layer above the vegetation canopy at half-hourly time-step. In the most recent standardized collection, the La-Thuille 2007 data set, there are around 950 site-years containing observations from a total of 253 sites (documented and available subject to specific use-policies at The FLUXNET network has the highest density of sites in Europe and North America, but data from all other continents are available as well. Information on the exact instrument and configuration for temperature and humidity measurements is not generally available. External data which is available to characterize the landscape context include images from Google at a maximum of five resolutions (at some remote sites the highest resolution is not available) (Reichstein pers comm.), Visual Earth ( and MODIS cutouts (ORNL DAAC). Some sites but not many also have webcams installed, but those are not in the current data set.

Figure 1:  Distribution of FLUXNET sites within the LaThuile database (A) in geographical space, (B) in simplified climate space. In (A) maps colors code mean annual temperature (CRU) according to legend. Grey are area which are not covered by FLUXNET sites in terms of climate space (climate space distance threshold). In (A) and (B) symbol represent land cover classes as in the legend of (B) . (from Reichstein et al. in prep.)

Our proposal is to compare the anomalies and long term trends in dry bulb temperature and absolute humidity at the Fluxnet sites with GHCN measurements of these quantities sites that are in the vicinity of the Fluxnet locations. The sensible, latent and radiative fluxes at the Fluxnet sites can be used to explain the observed anomalies and trends.

Among the research questions are:

  • Are there statistically different anomalies and trends between the Fluxnet and GHCN nearly collocated sites? Do they occur predominantly during specific synoptic situations?
  • If so, what is the reason for the differences? Can a landscape type component be used to explain some or all of the differences?

Photographs of the GHCN sites that are used for these comparisons need to be obtained, as has been completed for the USHCN (see Watts, 2009).


Diffenbaugh, N. S., 2009:Influence of modern land cover on the climate of the United States. Climate Dynamics. DOI 10.1007/s00382-009-0566-z

Fall, S., D. Niyogi, A. Gluhovsky, R. A. Pielke Sr., E. Kalnay, and G. Rochon, 2009: Impacts of land use land cover on temperature trends over the continental United States: Assessment using the North American Regional Reanalysis. Int. J. Climatol., DOI: 10.1002/joc.1996.

Fall, S., N. Diffenbaugh, D. Niyogi, R.A. Pielke Sr., and G. Rochon, 2010: Temperature and equivalent temperature over the United States (1979 – 2005). Int. J. Climatol., DOI: 10.1002/joc.2094.

Fall, S., A. Watts, J. Nielsen-Gammon, E. Jones, D. Niyogi, J. Christy, and R.A. Pielke Sr., 2011: Analysis of the impacts of station exposure on the U.S. Historical Climatology Network temperatures and temperature trends. J. Geophys. Res.,  116, D14120, doi:10.1029/2010JD015146.Copyright (2011) American Geophysical Union.

Thomas R. Karl, Susan J. Hassol, Christopher D. Miller, and William L. Murray, editors, 2006. Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences. A Report by the Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC.

Klotzbach, P.J., R.A. Pielke Sr., R.A. Pielke Jr., J.R. Christy, and R.T. McNider, 2009: An alternative explanation for differential temperature trends at the surface and in the lower troposphere. J. Geophys. Res., 114, D21102, doi:10.1029/2009JD011841.

Klotzbach, P.J., R.A. Pielke Sr., R.A. Pielke Jr., J.R. Christy, and R.T. McNider, 2010: Correction to: “An alternative explanation for differential temperature trends at the surface and in the lower troposphere. J. Geophys. Res., 114, D21102, doi:10.1029/2009JD011841″, J. Geophys. Res., 115, D1, doi:10.1029/2009JD01365

Mahmood, R., R.A. Pielke Sr., K.G. Hubbard, D. Niyogi, G. Bonan, P. Lawrence, B. Baker, R. McNider, C. McAlpine, A. Etter, S. Gameda, B. Qian, A. Carleton, A. Beltran-Przekurat, T. Chase, A.I. Quintanar, J.O. Adegoke, S. Vezhapparambu, G. Conner, S. Asefi, E. Sertel, D.R. Legates, Y. Wu, R. Hale, O.W. Frauenfeld, A. Watts, M. Shepherd, C. Mitra, V.G. Anantharaj, S. Fall,R. Lund, A. Nordfelt, P. Blanken, J. Du, H.-I. Chang, R. Leeper, U.S. Nair, S. Dobler, R. Deo, and J. Syktus, 2010: Impacts of land use land cover change on climate and future research priorities. Bull. Amer. Meteor. Soc., 91, 37–46, DOI: 10.1175/2009BAMS2769.1

Parker, D. E. (2004), Climate: Large-scale warming is not urban, Nature, 432, 290(18 November 2004); doi:10.1038/432290a.

Parker, D. E., P. Jones, T. C. Peterson, and J. Kennedy (2009), Comment on ‘Unresolved Issues with the Assessment of Multi-Decadal Global Land Surface Temperature Trends’ by Roger A. Pielke, Sr. et al., J. Geophys. Res., doi:10.1029/2008JD010450

Reichstein, M., Papale, D., Baldocchi, D. et al. (in prep). A new global harmonized eddy covariance data set from FLUXNET: uncertainties, limitations and robust global patterns

Teuling A.J., Seneviratne S.I., Stöckli R., Reichstein M., Moors E., Ciais P., Luyssaert S., van den Hurk B., Ammann C., Bernhofer C., Dellwik E., Gianelle D., Gielen B., Grünwald T., Klumpp K., Montagnani L., Moureaux C., Sottocornola M. & Wohlfahrt G. (2010) Contrasting response of European forest and grassland energy exchange to heatwaves. Nature Geoscience, doi:10.1038/ngeo950

Thomas C. Peterson, Russell Vose, Richard Schmoyer, Vyachevslav Razuvaëv, 1998:  Global historical climatology network (GHCN) quality control of monthly temperature data DOI: 10.1002/(SICI)1097-0088(199809)18:11<1169::AID-JOC309>3.0.CO;2-U

Pielke Sr., R.A., C. Davey, and J. Morgan, 2004: Assessing “global warming” with surface heat content. Eos, 85, No. 21, 210-211

Pielke Sr., R.A., C. Davey, D. Niyogi, S. Fall, J. Steinweg-Woods, K. Hubbard, X. Lin, M. Cai, Y.-K. Lim, H. Li, J. Nielsen-Gammon, K. Gallo, R. Hale, R. Mahmood, S. Foster, R.T. McNider, and P. Blanken, 2007: Unresolved issues with the assessment of multi-decadal global land surface temperature trends. J. Geophys. Res., 112, D24S08, doi:10.1029/2006JD008229.

Pielke Sr., R.A., C. Davey, D. Niyogi, S. Fall, J. Steinweg-Woods, K. Hubbard, X. Lin, M. Cai, Y.-K. Lim, H. Li, J. Nielsen-Gammon, K. Gallo, R. Hale, R. Mahmood, S. Foster, R.T. McNider, and P. Blanken, 2009: Reply to comment by David E. Parker, Phil Jones, Thomas C. Peterson, and John Kennedy on “Unresolved issues with the assessment of multi-decadal global land surface temperature trends. J. Geophys. Res., 114, D05105, doi:10.1029/2008JD010938.

Watts, A. 2009: Is the U.S. Surface Temperature Record Reliable? 28 pages, March 2009 The Heartland Institute.

source of image

Comments Off on A Proposal “Comparison Of GHCN Temperature Anomalies And Trends With Long Term Fluxnet Temperature Anomalies And Trends”

Filed under Uncategorized

A Climate Science Post On September 4 2011 Involving Peter Gleick

On September 4 2011 I posted

Hatchet Job On John Christy and Roy Spencer By Kevin Trenberth, John Abraham and Peter Gleick

I have reposted below since the recent behavior (e.g. see) of Peter Gleick, co-founder and president of the Pacific Institute for Studies in Development, Environment, and Security in Oakland, California,  involving the Heartland Institute is just another example of the often vitriolic and unseemly behavior by some to discredit what are appropriate alternative viewpoints on the climate issue.  Unfortunately, the action towards the Heartland Institute displayed by Peter Gleick is just another example of an attitude of a significant number of individuals in the leadership of the climate science community.

Original Post of September 4 2011

There is an opinion article at Daily Climate that perpetuates serious misunderstandings regarding the research of Roy Spencer and John Christy. It also is an inappropriate (and unwarranted) person attack on their professional integrity. Since I have first hand information on this issue, I am using my weblog to document the lack of professional decorum by Keven Trenberth, John Abraham and Peter Gleick.

The inappropriate article I am referring to is

Opinion: The damaging impact of Roy Spencer’s science

published on the Daily Climate on September 2 2011. The article is by Kevin Trenberth, John Abraham, and Peter Gleick.

Their headline reads

In his bid to cast doubts on the seriousness of climate change, University of Alabama’s Roy Spencer creates a media splash but claims a journal’s editor-in-chief.

The science doesn’t hold up.

I am reproducing the text of the article below with my comments inserted.

The text of their article starts with [highlights added]

The widely publicized paper by Roy Spencer and Danny Braswell, published in the journal Remote Sensing in July, has seen a number of follow-ups and repercussions.

Unfortunately this is not the first time the science conducted by Roy Spencer and colleagues has been found lacking. The latest came Friday in a remarkable development, when the journal’s editor-in-chief, Wolfgang Wagner, submitted his resignation and apologized for the paper.

As we noted on when the paper was published, the hype surrounding Spencer’s and Braswell’s paper was impressive; unfortunately the paper itself was not. Remote Sensing is a fine journal for geographers, but it does not deal much with atmospheric and climate science, and it is evident that this paper did not get an adequate peer review. It should have received an honest vetting.

My Comment:

The claim that a journal on remote sensing, which publishes paper on the climate system “but…does not deal much with atmospheric and climate science”, is not climate science is obviously incorrect.  This trivialization of the journal in this manner illustrates the inappropriately narrow view of the climate system by the authors.  That the paper “should have received an honest vetting”, I assume means that they or their close colleagues should have reviewed it (and presumably recommended rejection).

The Trenberth et al text continues

Friday that truth became apparent. Kevin Trenberth received a personal note of apology from both the editor-in-chief and the publisher of Remote Sensing. Wagner took this unusual and admirable step after becoming aware of the paper’s serious flaws. By resigning publicly in an editorial posted online, Wagner hopes that at least some of this damage can be undone.

My Comment:

My son has posted on this (see). I agree; for Kevin Trenberth to receive an apology is quite bizarre.

Their text continues

Unfortunately this is not the first time the science conducted by Roy Spencer and colleagues has been found lacking.

Spencer, a University of Alabama, Huntsville, climatologist, and his colleagues have a history of making serious technical errors in their effort to cast doubt on the seriousness of climate change. Their errors date to the mid-1990s, when their satellite temperature record reportedly showed the lower atmosphere was cooling. As obvious and serious errors in that analysis were made public, Spencer and Christy were forced to revise their work several times and, not surprisingly, their findings agree better with those of other scientists around the world: the atmosphere is warming.

My Comment:

This statement of the history is a fabrication and is an ad hominem attack.  The errors in their analysis were all minor and were identified as soon as found. Such corrections are a normal part of the scientific process as exemplified recently in the finding of a substantial error in the ERA-40 reanalysis;

Screen, James A., Ian Simmonds, 2011: Erroneous Arctic Temperature Trends in the ERA-40 Reanalysis: A Closer Look. J. Climate, 24, 2620–2627. doi: 10.1175/2010JCLI4054.1.

My direct experience with the UAH-MSU data analysis has been over more than a decade. I will share two examples here of the rigor with which they assess and correct, when needed, their analyses.

First, at one of the  CCSP 1.1 committee meetings that I attended  [for the report Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences (in Chicago)],  an error was brought to the attention of Roy Spencer and John Christy by the lead investigators of the RSS MSU project (Mears and Wentz).

The venue at which this error was brought up (in our committee meeting) was a clear attempt to discredit John and Roy’s research as we sat around the table. Roy found a fix within a few minutes, and concluded it was minor. This fix was implemented when he returned to Alabama.

When I saw how this “exposure” of an error was presented (in front of all of us, instead of in private via e-mail or phone call), I became convinced that a major goal of this committee (under the leadership of Tom Karl) was to discredit them. I told John this at a break right after this occurred. At a later meeting (in December 2008),

Protecting The IPCC Turf – There Are No Independent Climate Assessments Of The IPCC WG1 Report Funded And Sanctioned By The NSF, NASA Or The NRC.

I explicitly saw Tom Karl disparage the Christy and Spencer research.

In order to further examine the robustness of the Christy and Spencer analyses, in 2006 I asked Professor Ben Herman, who is an internationally well-respect expert in atmospheric remote sensing, to examine the Christy and Spencer UAH MSU  and the Wentz and Mears RSS MSU data analyses.   He worked with a student to do this and completed the following study

Randall, R. M., and B. M. Herman (2007), Using Limited Time Period Trends as a Means to Determine Attribution of Discrepancies in Microwave Sounding Unit Derived Tropospheric Temperature Time Series, J. Geophys. Res., doi:10.1029/2007JD008864

which includes the finding that

“Comparison of MSU data with the reduced Radiosonde Atmospheric Temperature Products for Assessing Climate radiosonde data set indicates that RSS’s method (use of climate model) of determining diurnal effects is likely overestimating the correction in the LT channel. Diurnal correction signatures still exist in the RSS LT time series and are likely affecting the long-term trend with a warm bias.”

The robustness of the UAH MSU [the Christy and Spencer analysis] is summarized in the text

“Figure 5 shows that 10-year trends center on the mid-1994’s through 10 year trends centered on the mid-1995’s indicates the RSS−Sonde trends are significantly different from zero where the Sonde−UAH trends are not. In addition, for 10-year trends centered on late-1999 through 10- years trend centered on early 2000 the RSS−Sonde trends are significantly different from zero where Sonde−UAH are marginally not. Another key feature in the RSS−Sonde series is the rapid departure in trend magnitude from trends centered on 1995 through trends centered on late-1999 where the Sonde−UAH magnitude in trends is nearly constant. These features are consistent with the diurnal correction signatures previously discussed. These findings [in] the RSS method for creating the diurnal correction (use of a climate model) is [the] cause for discrepancies between RSS and UAH databases in the LT channel.”

The latest Trenberth et al article is a continuation of this ad hominem effort to discredit John Christy and Roy Spencer.

The Trenberth et al article continues

Over the years, Spencer and Christy developed a reputation for making serial mistakes that other scientists have been forced to uncover. Last Thursday, for instance, the Journal of Geophysical Research – Atmospheres published a study led by Lawrence Livermore National Laboratory climate scientist Ben Santer. Their findings showed that Christy erred in claiming that recent atmospheric temperature trends are not replicated in models.

This trend continues: On Tuesday the journal Geophysical Research Letters will publish a peer-reviewed study by Texas A&M University atmospheric scientist Andrew Dessler that undermines Spencer’s arguments about the role of clouds in the Earth’s energy budget.

We only wish the media would cover these scientific discoveries with similar vigor and enthusiasm that they displayed in tackling Spencer’s now-discredited findings.

My Comment:

Roy Spencer is hardly discredited because there are papers that disagree with his analysis and conclusions.  This will sort itself out in the peer-reviewed literature after he has an opportunity to respond with a follow on paper, and/or a Comment/Reply exchange.  Similarly, John Christy can respond to the Santer et al paper that is referred to in the Trenberth et al article.

What is disturbing, however, in the Trenberth et al article is its tone and disparagement of two outstanding scientists. Instead of addressing the science issues, they resort to statements such as Spencer and Christy making “serial mistakes”.  This is truly a hatchet job and will only further polarize the climate science debate

Comments Off on A Climate Science Post On September 4 2011 Involving Peter Gleick

Filed under Bias In News Media Reports, Climate Science Reporting