New Paper “The Impact Of Urbanization On Current And Future Coastal Precipitation: A Case Study For Houston” By Shepherd Et Al 2010

There is a new paper which demonstrates the role of urban areas in rainfall. It is

J Marshall Shepherd, 2010: The impact of urbanization on current and future coastal precipitation: a case study for Houston, Environment and Planning B: Planning and Design. doi:10.1068/b34102t

The abstract reads

The approach of this study was to determine, theoretically, what impact current and future urban land use in the coastal city of Houston, Texas has on the space and time evolution of precipitation on a `typical’ summer day. Regional model simulations of a case study for 25 July 2001 were applied to investigate possible effects of urban land cover on precipitation development. Simulations in which Houston urban land cover was included resolved rain cells associated with the sea breeze front and a possible urban circulation on the northwest fringe of the city. Simulations without urban land cover did not capture the initiation and full intensity of the `hypothesized’ urban-induced rain cell. The response is given the terminology the `urban rainfall effect’ or URE. An urban growth model (UrbanSim) was used to project the urban land-cover growth of Houston, Texas from 1992 to 2025. A regional atmospheric-land surface model was then run with the 2025 urban land-cover scenario. Though we used a somewhat theoretical treatment, our results show the sensitivity of the atmosphere to urban land cover and illustrate how atmosphere ^ land interactions
can affect cloud and precipitation processes. Two urban-induced features, convergence zones along the inner fringe of the city and an urban low-pressure perturbation, appear to be important factors that lead to enhanced rain clouds independently or in conjunction with the sea breeze. Simulations without the city (NOURBAN) produced less cumulative rainfall in the west-northwest Houston area than simulations with the city represented (URBAN). Future urban land-cover growth projected by UrbanSim (URBAN2025) led to a more expansive area of rainfall, owing to the extended urban boundary and increased secondary outflow activity. This suggests that the future urban land cover might lead to temporal and spatial precipitation variability in coastal urban microclimates. It was beyond the scope of the analysis to conduct an extensive sensitivity analysis of cause ^ effect relationships, though the experiments provide some clues as to why the rainfall evolution differs. This research demonstrates a novel application of urban planning and weather ^ climate models. It also raises viable questions concerning future planning strategies in urban environments in consideration of hydroclimate changes.”

The concluding paragraph of the paper reads

“As concern grows about the impact of human processes on climate change, water cycle accelerations, and precipitation variability, it is important to place urban processes into the context of regional and global climate system processes. Finally, urban rainfall processes have profound implications for surface runoff, water resource management, agriculture, weather forecasting, and urban planning.”

Comments Off on New Paper “The Impact Of Urbanization On Current And Future Coastal Precipitation: A Case Study For Houston” By Shepherd Et Al 2010

Filed under Climate Change Forcings & Feedbacks, Research Papers

Comments are closed.